A Parallel Island Model for Biogeography-Based Classification
Rule Mining in Julia

Samuel Ebert
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA
saebert@ncsu.edu

ABSTRACT

In this paper, we present a distributed island model implementation
of biogeography-based optimization for classification rule mining
(island BBO-RM). Island BBO-RM is an evolutionary algorithm for
rule mining that uses Pittsburgh style classification rule encoding,
which represents an entire ruleset (classifier) as a single chromo-
some. Our algorithm relies on biogeography-based optimization
(BBO), an optimization technique that is inspired by species migra-
tion pattern between habitats. Biogeography-based optimization
has been reported to perform well in various applications rang-
ing from function optimization to image classification. A major
limitation of evolutionary rule mining algorithms is their high com-
putational cost and running time. To address this challenge, we
have applied a distributed island model to parallelize the rule extrac-
tion phase via BBO. We have explored several different migration
topologies and data windowing techniques. Our algorithm is im-
plemented in Julia, a dynamic programming language designed
for high-performance and parallel computation. Our results show
that our distributed implementation is able to achieve considerable
speedups when compared to a serial implementation. Without data
windowing, we obtain speedups up to a factor of 9 without a loss
of classification accuracy. With data windowing, speedups up to a
factor of 30 were obtained with a small loss of accuracy in some
cases.

CCS CONCEPTS

+ Computing methodologies — Parallel algorithms; Super-
vised learning by classification; Rule learning;

KEYWORDS

Evolutionary algorithms, biogeography-based optimization, island
model

ACM Reference Format:

Samuel Ebert, Effat Farhana, and Steffen Heber. 2018. A Parallel Island Model
for Biogeography-Based Classification Rule Mining in Julia. In GECCO 18
Companion: Genetic and Evolutionary Computation Conference Companion,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5764-7/18/07...$15.00
https://doi.org/10.1145/3205651.3208262

Effat Farhana
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA
efarhan@ncsu.edu

Steffen Heber

Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA
sheber@ncsu.edu

FJuly 15-19, 2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https:
//dOi.Org/lo.l145/3205651.3208262

1 INTRODUCTION

The goal of classification is to identify the correct class of new data
points based on a given training data set with known class labels.
Classification rules are rules of the form IF P THEN C, or P—C,
where P is the conjunction of attribute tests and C is the assigned
class label. Rule-based classification is a classification approach that
uses a set of classification rules to assign a class label to new data
points. Rule-based classifiers can often achieve a similar accuracy to
popular black-box classifiers such as support vector machines [12]
or neural networks [38], and have the additional benefit of being
extremely easy to use, explain, and interpret. This makes them par-
ticularly suitable for applications where both predictive accuracy
and comprehensibility are important. Examples of such applica-
tions include credit risk evaluation [26], software defect prediction
[24], and disease classification [25]. There are various approaches
for classification rule induction, including algorithms that rely on
association rules [23], decision tree-based methods [32], and algo-
rithms that use rough sets [29]. One of the most successful rule
induction paradigms is genetics-based machine learning (GBML).
GBML-based methods offer a balance between exploring the search
space and improving the promising solutions simultaneously [14].
However, these methods are often computationally expensive and
require a high number of fitness function evaluations. This becomes
particularly problematic for large data sets.

Due to the rapidly-increasing availability of cluster comput-
ing and general-purpose computing on graphics processing units
(GPUs), parallel computing has emerged as a powerful tool to reduce
running time and to make large data sets tractable for GBML-based
approaches. Several methods exist for the parallelization of GBML
algorithms. The most straightforward is the master-slave approach,
which computes fitness evaluations in parallel while otherwise
running the same algorithm as a serial approach [9]. A closely-
related approach makes use of GPUs for this fitness computation
[43]. Other methods of parallelization change the structure of the
algorithm beyond simply parallelizing the fitness evaluation. These
non-embarrassingly parallel methods are generally divided into
two classes: fine-grained and coarse-grained. Fine-grained methods,
such as cellular evolutionary algorithms, maintain a single popula-
tion with individuals only being able to interact with individuals in
their neighborhood in the population. These are often distributed in
a manner that places each individual on its own processor core [10].
Coarse-grained methods, also referred to as island models, main-
tain several subpopulations in parallel that evolve independently

https://doi.org/10.1145/3205651.3208262
https://doi.org/10.1145/3205651.3208262
https://doi.org/10.1145/3205651.3208262

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

and exchange information at periodic intervals [40]. Results in the
literature report that these island model implementations can show
significant and sometimes even superlinear speedups [3, 4, 11, 22].
In addition to speedups, the island model has shown the potential
to increase the quality of the final solution, as discussed in [42]. See
[37] for a general overview of the structure and implementation of
island model genetic algorithms.

In this paper, we evaluate performance of island models in the
context of GBML. We have selected BBO-RM [13], which gener-
ates classification rules via biogeography-based optimization (BBO).
BBO is a modern EA that was first proposed by Dan Simon [35].
BBO-RM miines rules within the Pittsburgh based paradigm [27].
In Pittsburgh-style encoding, one chromosome represents an en-
tire ruleset. As the rules of a ruleset evolve simultaneously, this
representation is capable of accounting for interactions between
classification rules. As a consequence, the resulting rulesets of
Pittsburgh-style systems often perform better than classifiers that
consist of individually optimized rules [14]. Unfortunately, the good
performance of the Pittsburgh-style encoded rulesets is often com-
bined with high computational costs. To address this challenge,
we have parallelized BBO-RM using a distributed island model.
To further increase performance, our implementation uses the dy-
namic high-performance programming language Julia. Introduced
in 2012, the Julia language is designed with an emphasis on per-
formance, parallelization, and technical computing [6]. Julia uses
native just-in-time compilation based on a low-level virtual ma-
chine [21]; benchmarks place the language in a similar class as
static-typed languages such as C and C++. To facilitate additional
performance increases, Julia supports concurrent, multi-core, and
distributed computing [2].

The contributions of this paper are as follows: we develop an
island model for biogeography-based rule mining island BBO-RM.
We explore the effect of different migration topologies and data
windowing on the performance of our island model implementa-
tion. We utilize the performance and parallelization features of a
modern programming language, Julia. We report our experimental
results in the context of eight benchmark datasets from the UCI
machine learning repository [8]. For evaluation metrics, we report
accuracy and elapsed time to compare the performance of the single
population and island models.

2 RELATED WORK

Island model evolutionary algorithms have been successfully ap-
plied to a wide range of complex problems. One of the earliest
advances in this field was the GENITOR II algorithm, proposed in
1990 by Whitley and Starkweather [42]. The algorithm discussed
used a distributed population of 10 islands arranged in a ring. The
authors compared the performance of this island model implemen-
tation to the serial GENITOR algorithm and found that the island
model consistently outperformed the serial one [39]. In addition to
the performance advantages, the authors noted a greater robust-
ness of the distributed version, citing an ability to find high-quality
solutions without the need for extensive parameter tuning.
Whitley et al. considered the application of island model genetic
algorithms to linearly separable problems [41]. The authors hy-
pothesized that island models could have an advantage for these

S. Ebert et al.

problems due to the greater search diversity provided by multiple
islands; each island could work toward solving a different subprob-
lem of the linearly-separable problem. The authors reported mixed
results in tests of this framework; the island model was reported to
outperform the single-population on a four-bit deceptive function
but did not show the same advantages on other functions. The au-
thors noted that among the different configurations of island models
tested, the best performance was achieved by dividing the given
population size into high numbers of islands and small population
sizes.

Several authors have investigated the impact of migration pol-
icy and migration topology on the performance of island model
genetic algorithms. Guan and Szeto tested a wide variety of ran-
dom migration topologies and found that the best performance was
reached when the connectivity level in the graph was between 40
and 70 percent [16]. Direct comparisons of migration topologies
have shown mixed results; depending on the details of the algo-
rithms and problems tested, different authors have reported that the
star [5], torus [20], or modified ring and hypercube [31] performed
best. Sekaj tested several topologies of the island model on multiple
benchmark functions and found that the best-performing topolo-
gies varied based on the function being optimized [33]. For smooth
functions, a dense topology with frequent migration performed
best, while for more difficult functions, a sparser topology with less
frequent migration performed best. The paper suggested that this
was due to the greater preservation of genetic diversity provided
by a more isolated model, which was necessary to solve difficult
functions. These mixed results in the literature suggest that there
is not a single optimal migration configuration that can be relied
on to perform well on all problems.

Although a great deal of work has been done in the field of is-
land model genetic algorithms, most research has focused on the
application of these algorithms to the optimization of parametric
benchmark functions. Their application to GBML has not been
as extensively studied. However, several papers have made con-
tributions to this field. Ishibuchi et al. proposed an island model
implementation of a Pittsburgh-style GBML system for fuzzy rule
mining [18]. The work describes a system of training data rotation
between islands to further speed up execution. The authors found
that the island model was able to greatly reduce execution time
on the datasets tested. The island model has also been applied for
Michigan GBML. Sharma and Saroj found that the island model led
to a considerable increase in classification accuracy compared to a
single population in a Michigan GMBL system [34]. Srinivasa et al.
found that an island model Michigan GBML system with adaptive
population sizing performed favorably when tested against several
other machine learning techniques [36]. This body of previous re-
search into island model genetic algorithms shows the effectiveness
of these techniques for a wide range of problems.

3 BBO-RM ALGORITHM

This section presents a brief overview the BBO algorithm and the
biogeography-based rule miner BBO-RM.

A Parallel Island Model for Biogeography-Based Rule Mining in Julia

3.1 Overview of BBO

BBO is an evolutionary algorithm (EA) motivated by species migra-
tion patterns through time and space. BBO assumes an archipelago
where each island represents a candidate solution of an optimiza-
tion problem. The key difference between BBO and other EAs is
BBO’s use of a migration scheme instead of a crossover operation.
In BBO, solutions exchange species (genes) via multi-parent, fit-
ness proportionate probabilities instead of the two-parent, fixed
crossover rate policy used by traditional EAs. Islands with high
fitness tend to resist changes, while less-fit islands tend to receive
species from good islands and improve their fitness. Mutation and
elitism are applied similarly to other EAs, as shown in Fig. 4a. BBO
has been successfully employed in benchmark function optimiza-
tion as well as many real-life problems, including economic load
dispatch [7] , flexible job shop scheduling [30], image classification
[28], and many others [17].

3.2 BBO-RM Classifier

BBO-RM uses Pittsburgh-style encoding. Each chromosome corre-
sponds to a candidate solution (list of classification rules). Different
solutions might contain different numbers of rules. However, there
are lower and upper bounds for the number of rules in a solution.
Each rule R contains a certain number attR € [attMin, attMax] of
attribute tests. For discrete features, attribute tests have the form
Attribute = Value or Attribute # Value. For continuous features,
tests are of the form Attribute € [Lower_Bound, Upper_Bound].

Population initialization is performed via a mixed approach that
uses both randomly generated rules (20% of all rules with equal pro-
portion of class labels) and seeded rules [19]. The seeding procedure
selects a training example via sampling without replacement and
generalizes it as a rule. For continuous values, the bounds take val-
ues of [seed — intervalLength/2, seed + intervalLength/2], where
the variable intervalLength is randomly initialized with values cho-
sen from a uniform distribution with range between 25% and 75%
of the domain size. The class label of randomly generated rules is
set to the class with the highest frequency among the data points
in the training set that cover the rule.

The mutation operation involves selecting a ruleset with a fixed
mutation probability, selecting a rule in this ruleset with uniform
probability, and then mutating one attribute of the rule. Mutation
alters bounds of a numerical attribute. For a nominal attribute, a
value is randomly chosen from the domain.

BBO-RM uses an accuracy-based fitness function. The classifier
is a sorted rule list where the first matching rule determines the
class label. The default class is the majority class of the training
dataset. A data point x is assigned the label of the default class if
no rule covers x.

4 DISTRIBUTED BBO-RM ALGORITHM
4.1 Island Model

Algorithm 1 provides an overview of the island model implemen-
tation of BBO-RM. This framework incorporates the BBO-RM al-
gorithm outlined in the previous section into a distributed island
model. Our implementation consists of nine islands, each running
an independently-initialized instance of the BBO-RM algorithm.

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

Each island communicates with the others in the system at set
intervals, exchanging information through migration and data win-
dowing. At the conclusion of the evolution process, each island
sends its best individual to the master process and the master pro-
cess chooses the best of these individuals as the final solution. These
processes are discussed in detail in their respective sections.

Algorithm 1 Overview of Island BBO-RM

1: for each island in parallel do

2 Initialize population of n individuals

3 Compute fitness of each individual

4 while generations < maxGenerations do

5 Save the k elite members in the population
6
7
8
9

Calculate immigration and emigration rates
Perform migration between candidate solutions
Apply mutation operator with given probability
Compute fitness of each population members

10: Replace the k worst individuals with the k elites from
the previous generation;
11 if generations mod migrationInterval == 0 then
12: Send a copy of the best individual to a neighboring
island;
13: Receive new individuals from neighboring islands
14: if Windowing == true then
15: Send training data slice to a neighboring island
16: Receive new training data from a neighboring
island;
17: end if
18: end if
19: end while
20: Send best individual to the master process
21: end for

4.2 Migration

Our island model uses a synchronous migration strategy, where all
islands exchange information after the same number of generations.
A parameter for migration interval dictates the frequency of this
information exchange. During the migration step, each island sends
a copy of its best individual to a neighboring island. This migrated
individual replaces the worst individual in the target population.
This migration scheme was chosen based largely on the findings
of CantAz-Paz in [11], which found that a best-replace-worst mi-
gration scheme led to the fastest convergence of several possible
strategies.

We test our island model on several different migration topolo-
gies, which control the possible communication links between is-
lands. We have chosen to study three topologies: the ring, grid,
and fully-connected topologies. Each topology is represented by a
graph with islands as vertices and communication links as edges;
each island can communicate only with islands adjacent to it in the
graph. The choice of topology affects the process used to choose a
destination for migrants. In the fully-connected and grid topologies,
islands send their migrants to a randomly-selected adjacent island.
In the ring topology, each island has designated neighbors and will
always send to and receive from the same respective islands. As
a consequence of this design, at each migration step, islands in

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

Figure 1: Ring Migration Topology

Figure 2: Grid Migration Topology

Figure 3: Fully-connected migration topology

the grid and fully-connected topologies can receive up to as many
migrants as their degree in the graph, while islands in the ring
topology will receive exactly one new migrant. In the event that
an island receives n migrants, these migrants replace the n worst
individuals in the island’s population. The three migration topolo-
gies are shown in Figures 1, 2, and 3, respectively. Fig. 4 depicts
the relation between the serial BBO-RM algorithm and our island
BBO-RM implementation.

S. Ebert et al.

o]

2) BBO-RM
BBO-RM
) Classifier
Classifier Migration
Migration

b) Island
BBO-RM

Clagsifier
Migration

Figure 4: Illustration of the BBO-RM algorithm (a) and its
relation to Island BBO-RM (b)

4.3 Data Windowing

To further reduce execution time, we have implemented a system of
training data windowing. Our windowing process is implemented
based on the one described in [18]. In our implementation, the orig-
inal training data is divided into nine stratified, mutually-exclusive
slices, each of which is assigned to an individual island. At each
migration step, islands rotate their assigned window of training
data according to their neighbors in the graph. The authors of [18]
noted that rotating data along the same link as the direction of chro-
mosome migration caused performance to degrade. To avoid this
problem, the authors of [18] set training data rotation to be in the
opposite direction of migration. Our work uses the same strategy
in the ring topology. For the grid topology, we have derived a graph
that ensures that training data can never move along the same link
as a migrating individual. Since this problem cannot be avoided in
a fully-connected topology, we use the same windowing topology
for the grid and fully-connected topologies. These data windowing
topologies are shown in Fig. 5.

Fig. 6 provides an example of our use of Julia’s parallelization
features. The figure shows a code snippet that sketches our island
model implementation of BBO-RM and illustrates how the individ-
ual island sub-populations are launched. We have used the single
program multiple data (SPMD) mode from Julia’s DistributedArrays
package, which facilitates the execution of functions in parallel on
all processor cores. The package presents functionality similar to
that found in MPI [1]. Within the functions shown for migration
and windowing, our implementation uses the sendto and recv from
functions from the SPMD package to communicate between islands.

A Parallel Island Model for Biogeography-Based Rule Mining in Julia

Figure 5: Data windowing topologies used with the ring (left)
and fully-connected and grid (right) migration topologies

addprocs(9)

@everywhere function islandBBORM(train, test, trainingDataslices, popSize,
pMutate, topology, usesWindowing, maxGen, migrationInterval)
neighbors = setNeighbors(topology)
trainingData = getWindow(train, trainingDataslices)
population, minCost, avgCost, minParvalue, maxParvalue,
attTypes, elitepopulation, island = init(...)

for generation in 1:maxGen
saveElites(population, elitePopulation)
migrationWithinPopulation(population, island)
mutation(population, island)
restoreIslandToPopulation(population, island)
calculateFitness(population)
restoreklites(population, elitePopulation)
computeCost(population)
sortByCost(population)

Perform migration and data windowing between islands

if generation % migrationInterval == @
barrier()
migrationBetweenIslands(neighbors, topology)
datawindowing(neighbors, topology)
computeCost(population, trainingData)
sortByCost(population)

end

end

end

Read in train and test data and partition training data

Run the function in parallel on all all 9 cores using the grid topology
spmd(islandBBO, trainData, testData, trainDataslices, 25,
0.6, "G", true, 5@, 10)

Figure 6: Code snippet detailing our use of Julia for parallel
computing

5 EXPERIMENTAL SETUPS
5.1 Datasets

We have tested our implementation on eight datasets from the
UCI Machine Learning Repository [8]. We have selected datasets
with a wide variety of characteristics. For example, we have chosen
datasets with binary and multiclass datasets, datasets with a mix
of continuous and categorical attributes, and datasets with only
numerical attributes. Our datasets range in size from roughly 2000
to 58000 instances and 6 to 36 attributes. All datasets and their
characteristics are shown in Table 1. Missing values in the adult
dataset were removed in preprocessing.

5.2 Parameter Settings

Parameters were used to set the mutation rate, population size,
number of elites, migration interval, and generation count. For both

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

Table 1: Comparison of percentages.

Dataset n R N C
Shuttle 58000 9 0 7
Adult 48842 8 6 2
Bank Mar- 45211 7 9 2
keting
Occupancy 20560 6 0 2
Magic 19020 10 0 2
Satellite 6435 36 0 7
Page 5473 10 0 5
Block
Segment 2310 19 0 7

the single-population and island model tests, we use a mutation rate
of 0.6 and a generation count of 50. The value for mutation rate was
chosen to match the value in [13], while the value for generation
count was chosen based on our observations of typical convergence
times in BBO-RM. We use a population size of 25 per island in the
island models and a size of 225 for the single-population model.
As our goal was to compare the performance of the island models
to the single population of the same overall size, we chose these
values to provide a sufficient population size for each of the islands
while still ensuring that the single-population size did not become
excessive. In the island models, we perform migration and data
windowing every 10 generations.

5.3 Experimental Setup

Experiments were performed on the three migration topologies dis-
cussed in Section 4.2. For each topology, we tested performance with
and without data windowing. We also tested the single-population
model with the same total population size. For all configurations,
we performed two repetitions of 10-fold cross-validation for a total
of 20 observations. All reported results are the average of these 20
values. All experiments were run on a high-performance computing
cluster running CentOS Linux release 7.2.1511 (Core) using Julia
version 0.6.2. The serial version ran on a single core, while all island
models used nine cores.

5.4 Results

Table 2 shows accuracy and time measurements for all configura-
tions. 95% confidence intervals were computed for all values using
the t-statistic and are displayed below the averages.

Overall, these results show that the island models are able to
achieve considerable speedups while maintaining comparable accu-
racy to the single-population version. For five of the eight datasets,
the best-performing island model had a higher accuracy than the
single population model. For island models without windowing,
speedups ranged from 3.7 to 8.9 compared to the serial version.
For models with windowing, speedups ranged from 17.8 to 30.2.
The highest speedups were seen on the segment, page and bank
marketing datasets. Speedup values for all configurations are plot-
ted in Fig. 7. Most island models without windowing achieved a
very similar accuracy to the single-population model. Models with
windowing tended to perform slightly worse than those without

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

Table 2: Comparison of percentages.

S. Ebert et al.

Dataset w Single-Population Fully-Connected Grid Ring
Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)
94.56 18310.9 94.84 3718.36 95.00 4193.91 94.99 3783.54
Shuttle 0
(93.43,95.69) (18203, 18419) (93.72,95.97) (3436,4001) (94.01,95.99) (3990,4397) (93.80,96.17) (3543, 4023)
1 B) 94.47 851.55 94.72 931.51 93.62 883.72
(93.57,9538) (813.7,889.4) (93.75,95.69) (890.5,972.5) (92.54,94.70) (839.0, 928.4)
94.56 18310.9 94.84 3718.36 95.00 4193.91 94.99 3783.54
Adult 0
(93.43,95.69) (18203, 18419) (93.72,95.97) (3436,4001) (94.01,95.99) (3990,4397) (93.80,96.17) (3543, 4023)
1 B) 94.47 851.55 94.72 931.51 93.62 883.72
(93.57,95.38) (813.7,889.4) (93.75,95.69) (890.5,972.5) (92.54,94.70) (839.0, 928.4)
Bank 0 94.56 18310.9 94.84 3718.36 95.00 4193.91 94.99 3783.54
(93.43,95.69) (18203, 18419) (93.72,95.97) (3436,4001) (94.01,95.99) (3990,4397) (93.80,96.17) (3543, 4023)
1 B) 94.47 851.55 94.72 931.51 93.62 883.72
(93.57,95.38) (813.7,889.4) (93.75,95.69) (890.5,972.5) (92.54,94.70) (839.0, 928.4)
Occupancy 0 94.56 18310.9 94.84 3718.36 95.00 4193.91 94.99 3783.54
(93.43,95.69) (18203, 18419) (93.72,95.97) (3436,4001) (94.01,95.99) (3990,4397) (93.80,96.17) (3543, 4023)
1 B . 94.47 851.55 94.72 931.51 93.62 883.72
(93.57,95.38) (813.7,889.4) (93.75,95.69) (890.5,972.5) (92.54,94.70) (839.0, 928.4)
. 94.56 18310.9 94.84 3718.36 95.00 4193.91 94.99 3783.54
Magic 0
(93.43,95.69) (18203, 18419) (93.72,95.97) (3436,4001) (94.01,95.99) (3990,4397) (93.80,96.17) (3543, 4023)
1 B) 94.47 851.55 94.72 931.51 93.62 883.72
(93.57, 95.38) (813.7, 889.4) (93.75, 95.69) (890.5, 972.5) (92.54, 94.70) (839.0, 928.4)
Satellite 0 94.56 18310.9 94.84 3718.36 95.00 4193.91 94.99 3783.54
(93.43,95.69) (18203, 18419) (93.72,95.97) (3436,4001) (94.01,95.99) (3990,4397) (93.80,96.17) (3543, 4023)
1 B) 94.47 851.55 94.72 931.51 93.62 883.72
(93.57,95.38) (813.7,889.4) (93.75,95.69) (890.5,972.5) (92.54,94.70) (839.0, 928.4)
Page 0 94.56 18310.9 94.84 3718.36 95.00 4193.91 94.99 3783.54
(93.43,95.69) (18203, 18419) (93.72,95.97) (3436,4001) (94.01,95.99) (3990,4397) (93.80,96.17) (3543, 4023)
1 B . 94.47 851.55 94.72 931.51 93.62 883.72
(93.57,95.38) (813.7,889.4) (93.75,95.69) (890.5,972.5) (92.54,94.70) (839.0, 928.4)
Segment 0 94.56 18310.9 94.84 3718.36 95.00 4193.91 94.99 3783.54
(93.43,95.69) (18203, 18419) (93.72,95.97) (3436,4001) (94.01,95.99) (3990,4397) (93.80,96.17) (3543, 4023)
94.47 851.55 94.72 931.51 93.62 883.72

1 -

(93.57, 95.38)

(813.7, 889.4)

(93.75, 95.69)

(890.5, 972.5)

(92.54, 94.70)

(839.0, 928.4)

windowing. One major outlier in both categories was the segment
dataset. For this dataset, all island models performed consider-
ably worse than the single population, and the island models with
windowing performed several percentage points better than those
without windowing.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented an effective island model imple-
mentation of biogeography-based classification rule mining. The
performance of our implementation shows that our island model
implementation is able to achieve speedups ranging from approx-
imately 4 to 9 without compromising accuracy on most datasets.
We have also presented a scheme for data windowing that provides
even larger speedups ranging from approximately 18 to 30, at the
cost of a small loss in accuracy on some problems. We have com-
pared the performance of the island model on several migration
topologies and have observed that for our datasets the choice of

migration topology does not have a major effect on classification ac-
curacy. There does appear to be some difference between topologies
with regard to speedup, but the results vary based on the problem
tested and do not appear to follow any identifiable trend. Some of
these differences may be explained by the stochastic nature of the
algorithm, as all configurations were run with different seed values
for the random number generator.

Our work also demonstrates the effectiveness of the Julia lan-
guage for parallel problems; the language features allowed our
algorithm to be implemented completely in a high-level language
without sacrificing the performance and parallel capabilities of low-
level languages such as C. Although the speedups of Julia compared
to other languages vary considerably depending on the computa-
tional task, in our previous comparison of function optimization
through serial BBO in Julia and MATLAB (data not shown) we
observed speedups of roughly a factor of 4.

A Parallel Island Model for Biogeography-Based Rule Mining in Julia

30

.//.\
25

“ \\/

Speed Up

10

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

Island Topology
Full_W
FullNw

@ Grid N\W

@ Grid W
Ring_NW
Ring_ W

S
|
|

segment
page
satellite
magic

occupancy
bank
adult
shuttle

Datasets, sorted by size

Figure 7: Speedup values for all configurations

Our results point towards several open avenues for future work.
We plan to investigate the impact of heterogeneous parameter
settings for elitism count, mutation rate, and rule length in the
different sub-populations. Previous research has shown that such
an approach can lead to greater robustness and sometimes even an
increase in solution quality [15]. In addition, we plan to investigate
alternative windowing schemes that do not involve data forwarding
between islands. Such schemes could have the potential to further
reduce execution time by reducing the communication overhead
of sending training data between islands. Finally, we also plan to
investigate the causes of unusual performance on certain datasets -
for example, on the segment dataset, island model implementations
with data windowing performed significantly better than islands
models without data windowing, unlike the observed results for
all other datasets. Currently, the impact of algorithm parameters
and dataset characteristics on classifier performance is not well-
understood.

ACKNOWLEDGMENTS

This work was supported in part by a Research Experiences for
Undergraduates stipend from the North Carolina State University
College of Engineering.

REFERENCES

[1] [n. d.]. Julia DistributedArrays.

DistributedArrays.jl

] [n.d.]. The Julia Language. https://julialang.org

[3] Enrique Alba. 2002. Parallel evolutionary algorithms can achieve super-linear
performance. Inform. Process. Lett. 82, 1 (2002), 7 - 13. https://doi.org/10.1016/
$0020-0190(01)00281-2

[4] Enrique Alba and JosAl M. Troya. 2001. Analyzing synchronous and asynchro-
nous parallel distributed genetic algorithms. Future Generation Computer Systems

https://github.com/JuliaParallel/

[

[10

(11]

[12

=
&

[14]

(15]

[16]

17,4 (2001), 451 — 465. https://doi.org/10.1016/S0167-739X(99)00129-6 Workshop
on Bio-inspired Solutions to Parallel Computing problems.

L R. Andalon-Garcia and A. Chavoya. 2012. Performance comparison of three
topologies of the island model of a parallel genetic algorithm implementation on a
cluster platform. In CONIELECOMP 2012, 22nd International Conference on Electri-
cal Communications and Computers. 1-6. https://doi.org/10.1109/CONIELECOMP.
2012.6189871

Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. 2012. Julia: A
Fast Dynamic Language for Technical Computing. CoRR abs/1209.5145 (2012).
arXiv:1209.5145 http://arxiv.org/abs/1209.5145

A. Bhattacharya and P. K. Chattopadhyay. 2010. Biogeography-Based Opti-
mization for Different Economic Load Dispatch Problems. IEEE Transactions
on Power Systems 25, 2 (May 2010), 1064-1077. https://doi.org/10.1109/TPWRS.
2009.2034525

C.L. Blake, E. Keogh, and C.J. Merz. [n. d.]. UCI repository of machine learning
databases. www.ics.uci.edu/mlearn/MLRepository.html

Erick Cantu-Paz. 1997. Designing Efficient Master-Slave Parallel Genetic Algo-
rithms.

Erick Cantu-Paz. 1998. A survey of parallel genetic algorithms. Calculateurs
paralleles, reseaux et systems repartis 10, 2 (1998), 141-171.

Erick Cant-Paz. 2001. Migration Policies, Selection Pressure, and Parallel
Evolutionary Algorithms. Journal of Heuristics 7, 4 (01 Jul 2001), 311-334.
https://doi.org/10.1023/A:1011375326814

Nello Cristianini and John Shawe-Taylor. 2000. An Introduction to Support Vector
Machines: And Other Kernel-based Learning Methods. Cambridge University Press,
New York, NY, USA.

Effat Farhana and Steffen Heber. 2017. Biogeography-based Rule Mining for
Classification. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO ’17). ACM, New York, NY, USA, 417-424. https://doi.org/10.1145/
3071178.3071221

Alex A. Freitas. 2002. Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Y. Gong and A. Fukunaga. 2011. Distributed island-model genetic algorithms
using heterogeneous parameter settings. In 2011 IEEE Congress of Evolutionary
Computation (CEC). 820-827. https://doi.org/10.1109/CEC.2011.5949703

Wang Guan and Kwok Yip Szeto. 2013. Topological Effects on the Performance
of Island Model of Parallel Genetic Algorithm. In Advances in Computational
Intelligence, Ignacio Rojas, Gonzalo Joya, and Joan Cabestany (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 11-19.

Weian Guo, Ming Chen, Lei Wang, Yanfen Mao, and Qidi Wu. 2017. A Survey
of Biogeography-based Optimization. Neural Comput. Appl. 28, 8 (Aug. 2017),
1909-1926. https://doi.org/10.1007/s00521-016-2179-x

https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/DistributedArrays.jl
https://julialang.org
https://doi.org/10.1016/S0020-0190(01)00281-2
https://doi.org/10.1016/S0020-0190(01)00281-2
https://doi.org/10.1016/S0167-739X(99)00129-6
https://doi.org/10.1109/CONIELECOMP.2012.6189871
https://doi.org/10.1109/CONIELECOMP.2012.6189871
http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1209.5145
https://doi.org/10.1109/TPWRS.2009.2034525
https://doi.org/10.1109/TPWRS.2009.2034525
www.ics.uci.edu/mlearn/MLRepository.html
https://doi.org/10.1023/A:1011375326814
https://doi.org/10.1145/3071178.3071221
https://doi.org/10.1145/3071178.3071221
https://doi.org/10.1109/CEC.2011.5949703
https://doi.org/10.1007/s00521-016-2179-x

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

[18]

[19

[20]

[21]

[22]

[23]

[24

[25]

[26]

[27

[28]

[29

[30]

[31]

[32]

[33

(34

[35]

[36]

[37

[38]

[39

[40]

[41

Hisao Ishibuchi, Shingo Mihara, and Yusuke Nojima. 2013. Parallel Distributed
Hybrid Fuzzy GBML Models With Rule Set Migration and Training Data Rotation.
Trans. Fuz Sys. 21, 2 (April 2013), 355-368. https://doi.org/10.1109/TFUZZ.2012.
2215331

Cezary Zygmunt Janikow. 1992. Inductive Learning of Decision Rules from
Attribute-based Examples: A Knowledge-intensive Genetic Algorithm Approach.
Ph.D. Dissertation. Chapel Hill, NC, USA. UMI Order No. GAX92-07958.

Jorg Lassig and Dirk Sudholt. 2010. Experimental Supplements to the Theoretical
Analysis of Migration in the Island Model. In Parallel Problem Solving from Nature,
PPSN XI, Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Giinter Rudolph
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 224-233.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04). Palo Alto,
California.

Shyh-Chang Lin, W. F. Punch, and E. D. Goodman. 1994. Coarse-grain parallel
genetic algorithms: categorization and new approach. In Proceedings of 1994 6th
IEEE Symposium on Parallel and Distributed Processing. 28-37. https://doi.org/10.
1109/SPDP.1994.346184

Bing Liu, Wynne Hsu, and Yiming Ma. 1998. Integrating Classification and
Association Rule Mining. In Proceedings of the Fourth International Conference
on Knowledge Discovery and Data Mining (KDD’98). AAAI Press, 80-86. http:
//dl.acm.org/citation.cfm?id=3000292.3000305

Yi Liu, Taghi M Khoshgoftaar, and Naeem Seliya. 2010. Evolutionary optimization
of software quality modeling with multiple repositories. IEEE Transactions on
Software Engineering 36, 6 (2010), 852-864.

Xavier Llora, Anusha Priya, and Rohit Bhargava. 2009. Observer-invariant
histopathology using genetics-based machine learning. 8 (03 2009), 101-120.
David Martens, Bart Baesens, Tony Van Gestel, and Jan Vanthienen. 2007. Com-
prehensible credit scoring models using rule extraction from support vector
machines. European Journal of Operational Research 183, 3 (2007), 1466 — 1476.
https://doi.org/10.1016/j.ejor.2006.04.051

Zbigniew Michalewicz. 1996. Genetic Algorithms + Data Structures = Evolution
Programs (3rd Ed.). Springer-Verlag, London, UK, UK.

V. K. Panchal, Parminder Singh, Navdeep Kaur, and Harish Kundra. 2009. Bio-
geography based Satellite Image Classification. CoRR abs/0912.1009 (2009).
arXiv:0912.1009 http://arxiv.org/abs/0912.1009

Zdzislaw Pawlak. 1998. ROUGH SET THEORY AND ITS APPLICATIONS TO
DATA ANALYSIS. Cybernetics and Systems 29, 7 (1998), 661-688. https://doi.
org/10.1080/019697298125470

Seyed Habib A. Rahmati and M. Zandieh. 2012. A new biogeography-based
optimization (BBO) algorithm for the flexible job shop scheduling problem. The
International Journal of Advanced Manufacturing Technology 58, 9 (01 Feb 2012),
1115-1129. https://doi.org/10.1007/s00170-011-3437-9

M. RuciADski, D. Izzo, and F. Biscani. 2010. On the impact of the migra-
tion topology on the Island Model. Parallel Comput. 36, 10 (2010), 555 — 571.
https://doi.org/10.1016/j.parco.2010.04.002 Parallel Architectures and Bioinspired
Algorithms.

Steven L. Salzberg. 1994. C4.5: Programs for Machine Learning by J. Ross Quinlan.
Morgan Kaufmann Publishers, Inc., 1993. Machine Learning 16, 3 (01 Sep 1994),
235-240. https://doi.org/10.1007/BF00993309

Ivan Sekaj. 2004. Robust Parallel Genetic Algorithms with Re-initialisation. In
Parallel Problem Solving from Nature - PPSN VIII, Xin Yao, Edmund K. Burke, José A.
Lozano, Jim Smith, Juan Julidan Merelo-Guervos, John A. Bullinaria, Jonathan E.
Rowe, Peter Tirlo, Ata Kaban, and Hans-Paul Schwefel (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 411-419.

Priyanka Sharma and Saroj. 2015. Discovery of Classification Rules Using Dis-
tributed Genetic Algorithm. Procedia Computer Science 46 (2015), 276 — 284.
https://doi.org/10.1016/j.procs.2015.02.021

Dan Simon. 2008. Biogeography-based optimization. IEEE transactions on evolu-
tionary computation 12, 6 (2008), 702-713.

KG Srinivasa, KR Venugopal, and Lalit M Patnaik. 2007. A self-adaptive migration
model genetic algorithm for data mining applications. Information Sciences 177,
20 (2007), 4295-4313.

Dirk Sudholt. 2015. Parallel evolutionary algorithms. In Springer Handbook of
Computational Intelligence. Springer, 929-959.

Sun-Chong Wang. 2003. Artificial Neural Network. Springer US, Boston, MA,
81-100. https://doi.org/10.1007/978-1-4615-0377-4_5

Darrell Whitley. 1989. The GENITOR Algorithm and Selection Pressure: Why
Rank-Based Allocation of Reproductive Trials is Best. In Proceedings of the Third
International Conference on Genetic Algorithms. Morgan Kaufmann, 116-121.
Darrell Whitley. 1994. A genetic algorithm tutorial. Statistics and computing 4, 2
(1994), 65-85.

Darrell Whitley, Soraya Rana, and Robert B Heckendorn. 1999. The island model
genetic algorithm: On separability, population size and convergence. Journal of
Computing and Information Technology 7, 1 (1999), 33-47.

S. Ebert et al.

[42] Darrell Whitley and Timothy Starkweather. 1990. Genitor II: A distributed genetic

algorithm. Journal of Experimental & Theoretical Artificial Intelligence 2, 3 (1990),
189-214.

[43] Man-Leung Wong, Tien-Tsin Wong, and Ka-Ling Fok. 2005. Parallel evolutionary

algorithms on graphics processing unit. In 2005 IEEE Congress on Evolutionary
Computation, Vol. 3. 2286-2293 Vol. 3. https://doi.org/10.1109/CEC.2005.1554979

https://doi.org/10.1109/TFUZZ.2012.2215331
https://doi.org/10.1109/TFUZZ.2012.2215331
https://doi.org/10.1109/SPDP.1994.346184
https://doi.org/10.1109/SPDP.1994.346184
http://dl.acm.org/citation.cfm?id=3000292.3000305
http://dl.acm.org/citation.cfm?id=3000292.3000305
https://doi.org/10.1016/j.ejor.2006.04.051
http://arxiv.org/abs/0912.1009
http://arxiv.org/abs/0912.1009
https://doi.org/10.1080/019697298125470
https://doi.org/10.1080/019697298125470
https://doi.org/10.1007/s00170-011-3437-9
https://doi.org/10.1016/j.parco.2010.04.002
https://doi.org/10.1007/BF00993309
https://doi.org/10.1016/j.procs.2015.02.021
https://doi.org/10.1007/978-1-4615-0377-4_5
https://doi.org/10.1109/CEC.2005.1554979

	Abstract
	1 Introduction
	2 Related Work
	3 BBO-RM Algorithm
	3.1 Overview of BBO
	3.2 BBO-RM Classifier

	4 Distributed BBO-RM Algorithm
	4.1 Island Model
	4.2 Migration
	4.3 Data Windowing

	5 Experimental Setups
	5.1 Datasets
	5.2 Parameter Settings
	5.3 Experimental Setup
	5.4 Results

	6 Conclusion and Future Work
	Acknowledgments
	References

