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ABSTRACT 
Rule-based classification is a popular approach for solving real 
world classification problems. Once suitable rules have been 
obtained, rule-based classifiers are easy to deploy and explain. In 
this paper, we describe an approach that uses biogeography-based 
optimization (BBO) to compute rule sets that maximize predictive 
accuracy. BBO is an evolutionary algorithm inspired by the 
migration patterns of species between the islands of an 
archipelago. In our implementation, each species corresponds to 
a classification rule, each island is occupied by multiple species 
and corresponds to a classifier, and the fitness of an island is 
computed as the predictive classification accuracy of the 
corresponding classifier. The archipelago evolves via mutation, 
selection, and migration of species between islands. Successful 
islands have a decreased immigration rate and an increased 
emigration rate. In general, such islands tend to resist invasion 
and to colonize less successful islands. This results in an evolving 
set of habitats that corresponds to a population of classifiers. We 
demonstrate the effectiveness of our approach by comparing it to 
several traditional and evolutionary based state-of- the-art 
classifiers. 
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→Supervised Learning → Supervised Learning by Classification  
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1 INTRODUCTION 

The goal of rule-based classification is to learn a set of 
classification rules that assigns new data points a class label. 
Classification rules have the form IF P THEN C, where P is a  

 
 
 
 
 
 

learning, fuzzy logic, or neural networks to extract classification 
rules for rule-based classification, see [33] for a detailed 
conjunction of data attribute tests and C is the class label. Several 
approaches have been developed that genetic algorithms, machine 
description. Once suitable rules have been extracted, rule-based 
classifiers are easy to understand, deploy, and explain. Due to its 
versatility, rule-based classification is a popular approach for 
solving real world classification problems, examples include 
analyzing stock exchange data to decide whether to buy or sell a 
stock [28], prostate tissue classification for recognizing cancer [9], 
and credit risk evaluation [39].  
     Evolutionary algorithms (EAs) are population-based 
metaheuristic optimization algorithms inspired by the principles 
of biological evolution. EAs have been widely used to learn 
classification rules, either through supervised learning or 
unsupervised learning [5]. In EAs, an initial population of 
candidate solutions is generated. Subsequently, the initial 
population evolves through multiple generations until a stopping 
criterion is met. During each iteration, a new population evolves 
from the previous population. The quality of each solution is 
evaluated, well performing solution are used to breed new 
candidate solutions, and poorly performing solutions are replaced. 
The success of the algorithm depends on the way that individuals 
(that is, candidate solutions) share information and collaborate 
with each other to move through the search space toward the 
optimum solution. Evolutionary rule-based systems [4] are a type 
of genetics based machine learning (GBML) that use sets of rules 
for knowledge representation [25]. In standard GBML, parents are 
selected randomly and a new population originates via crossover. 
There are two major rule-based GBML approaches: the Michigan 
approach and the Pittsburgh approach [7]. In the Michigan 
approach, each rule is encoded by an entire chromosome. On the 
other hand, in the Pittsburgh approach a single chromosome 
encodes an entire classifier that might consist of multiple 
classification rules. 
      In this paper, we describe an approach that uses 
biogeography-based optimization (BBO) to compute rule sets that 
maximize predictive accuracy. BBO is an evolutionary algorithm 
inspired by changes in the distribution of biological species over 
time and space [6]. We propose BBO-based rule miner (BBO-RM) 
to extract classification rules for a GBML system with Pittsburgh 
encoding. In BBO-RM, each island hosts multiple species 
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(classification rules) and encodes a classifier. Classifiers with high 
predictive accuracies correspond to islands with high fitness. 
Islands with lower fitness accept species from better performing 
islands, but they have a lower probability of sharing their species 
with others. In contrast, well performing islands tend to resist 
immigration and share their species generously. Over time, the 
average fitness of the population increases via mutation, selection 
and migration. We demonstrate the effectiveness of our approach 
by comparing it to several traditional and evolutionary based 
state-of the-art classifiers using fourteen selected datasets from 
UCI Machine Learning Repository [22].  
     The rest of the paper is organized as follows. First, 
Section 2 summarizes related work. Next, Section 3 describes the 
BBO framework. Section 4 contains a detailed description of BBO-
RM algorithm. Section 5 presents data sets, evaluation metrics and 
computational experiments. Conclusions and future work are 
described in Section 6. 

 

2 RELATED WORKS 
Due to their flexibility, EAs have been used to solve problems in 
various different application areas, ranging from art and biology 
to operations research and robotics [52]. Here, we will focus 
mainly on data mining and classification tasks. Several EAs use 
the Michigan encoding, for example XCS [13], and XCS with real 
values as input (XCSR, [5]). These systems act as reinforcement 
learning agents [2]. Despite the success of these Michigan-based 
system, Pittsburgh encoding seems to be particularly well-suited 
for classification and data mining applications [41]. Systems that 
use Pittsburgh encoding include the Genetic Algorithm Based 
Concept Learner (GABIL, [11]), Genetic-Based Inductive Learning 
(GIL, [10]), Genetic clASSIfier sySTem (GAssist, [20]), Ordered 

incremental genetic algorithm (OIGA, [46]), and Incremental learning with 

genetic algorithms (ILGA, [47]). Hybrid GBML systems combine both 
encodings [50-51].  Often EA’s use iterative rule learning to 
construct classification rules. During iterative rule learning the 
algorithm learns rule by rule sequentially and removes all the 
examples covered (matched) by a new rule from the training set. 
Systems that uses iterative rule learning include BioHEL [8], NAX 
[9], SLAVE [42], and HIDER [43]. In addition, several alternative 
methods for constructing classification rules have been described, 
examples include evolutionary programming, genetic 
programming [44-46]. Beyond EAs that evolve only one 
population, more complex co-evolutionary classification 
approaches that evolve multiple competing or cooperating 
populations in parallel have been explored [12]. A comprehensive 
review of EA based classifiers can be found in [14, 41].  
     To the best of our knowledge, this paper is the first application 
of the evolutionary BBO algorithm to rule-based classification. 
Bhugra and colleagues describe an application of BBO in 
combination with association rule mining [26]. In their work, the 
Apriori algorithm is used to generate frequent itemsets together 
with the corresponding association rules. Subsequently, BBO is 
used to enhance the quality of the derived rule set. In contrast, our 
method uses the (EA) BBO algorithm for classification rule 
extraction. 
 

 
3 BBO FRAMEWORK 
Biogeography based optimization is an example of how 
a natural process can be modeled to solve optimization 
problems [6]. The approach has been applied to approximate 
several benchmark functions [15], and to solve various real world 
problems including economic load dispatch [16], wireless network 
power allocation [17], flexible job shop scheduling [18] and many 
others. The BBO algorithm uses the migration patterns of species 
between the islands of an archipelago to evolve successful 
solutions. Each island represents a candidate solution, and 
contains a number of decision variables denoted as suitability 
index variables (SIVs).  The quality of a solution is measured by 
the habitat suitability index (HSI) of the island, analogously to the 
fitness function in EAs. Like other EAs, each candidate solution in 
BBO probabilistically shares decision variables with other 
candidate solutions to improve the fitness of candidate solutions. 
Each island immigrates (receives) decision variables from other 
islands based on its immigration rate, λ, and emigrates 
(donates/shares) decision variables to other islands based on its 
emigration rate, µ. A successful island has a high emigration rate 
and a low immigration rate. Conversely, a poor island has a low 
emigration rate and a high immigration rate. Following [49], the 
main steps of the BBO algorithm are described below: 

 
1. Initialize population (n islands). 
2. Compute island modification probabilities (λ and µ). 
3a. For each island use the corresponding immigration rate λ to 
probabilistically decide which islands will receive SIVs. 
3b. Use emigration rates µ together with roulette wheel selection 
to choose SIV donor islands for the islands selected in 3a. 
3c. For each selected pair of emigrating/immigrating island, 
migrate a decision variable (SIV) from the emigrating to the 
immigrating island. 
4. Mutate islands. 
5. Update HIS of each island. 
6. Go to step 2 until termination criterion is met. 
 
     BBO differs from other EAs in important aspects. The notion 
of ‘reproduction’ is absent in BBO. Unlike most other EAs where 
offspring is the compilation of two parental individuals from the 
previous generation, in BBO a new generation is produced by 
modifying the current generation via species migration. As a 
consequence, in contrast to most EAs, the initial population 
survives forever, it does not ‘die’ at the end of each generation.  

4 BBO RULE MINING ALGORITHM 
In the following Algorithm 1 we give an overview of our 
BBO-RM approach, followed by a detailed description of the used 
encoding mechanism (Section 4.1), our initialization strategy 
(Section 4.2), migration and mutation operators (Sections 4.3 and 
4.4), our fitness function (Section 4.5), and the stopping criteria 
(Section 4.6). We will refer to chromosomes as islands in the 
algorithm.  

 



   
  
 

 

 
 

 

Algorithm 1 Overview of BBO-RM 

1: Initialize the population. 
2: Compute the fitness of each island. 
3: repeat 
4:     Save the best (elite) k islands. 
5:     Calculate immigration rate λ and emigration 

       rate µ based on the fitness of    
       corresponding island. 

6:     Apply BBO migration operator   
7:     Apply mutation operator. 
8:     Compute the fitness of islands.   
9:     Replace the worst k islands with the elite    
           islands of the previous generation. 
10: until stopping criteria is fulfilled 

 

4.1 Encoding Mechanism 
An individual is represented by a set of ruleN different rules. The 
minimum and maximum number of rules a chromosome can 
have is determined by the values rMin, and rMax, respectively. 
The value ruleN is sampled from the range [rMin; rMax]. A rule 
is encoded as IF < conditions > THEN < classLabel >, where 
conditions are conjunctions of a set of conditions. Each condition 
is encoded as a triple: 

< 𝐴𝑡𝑡𝑟𝐼𝑛𝑑𝑒𝑥 > < = >  < 𝑉𝑎𝑙𝑗 > [for nominal attribute] 
< 𝐴𝑡𝑡𝑟𝐼𝑛𝑑𝑒𝑥 > <  𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 > <   𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 > 
[for numerical attribute] 

 
      AttrIndex is the positional index of the attribute in the 
attribute-list. Fig. 1 illustrates a rule encoding. Assume that ith 
attribute has been selected. If the attribute is numerical, then Li 
and Ui are lower and upper bounds of the associated intervals of 
the attribute. A data object will satisfy the condition if < Li ≤ ai ≤ 
Ui >, where ai is the value of attribute i for the data object. In case 
of nominal attribute, Valij denotes the jth value of the domain of 
ith attribute and the condition checks for equality of ai and Valij. 
Rules have variable lengths. The number of conditions (attributes) 
expressed in a rule is denoted by attN. This value is sampled 
within the range of [attMin; attMax]. Here attMin and attMax 
denote the minimum and maximum number of attributes that a 
rule can contain. Next, we choose relevant attributes of a rule by 
uniformly sampling attN values from the attribute lists. The 
maximum number of rules in a ruleset is bounded by rMax value. 
It should be noted that the parameter rMax prevents our system 
from bloating, a common problem in variable length 
representation of GA [20].  

4.2 Initialization Strategy 
We followed a mixed initialization approach, as suggested in GIL 
[10]. For each chromosome, 20% of all rules are instantiated 
randomly. The remaining rules are instantiated using training 
examples as seeds. At the beginning of the initialization stage of a 
rule, we determine the number of expressed attributes in it, attN. 

During random initialization, the upper and lower bounds of each 
real valued expressed attribute are assigned randomly within the 
domain size or a random categorical value is chosen. 

 

 
   Figure 1: Structure of a rule, att  attribute. att1 is nominal 
and attN is numerical attribute. C is the class label. Rule is 
interpreted as att1  att2  ...  attN  C 

 

     To determine the class label for such rules, we follow the 
approach suggested by Freitas [4]. For each class, we calculate 
how many training instances a newly generated rule covers. The 
class label that maximizes the fitness of the rule is chosen as the 
rule consequent. For rules instantiated by training examples, we 
follow a similar approach as described in [8]. The training 
examples are chosen randomly to act as ‘seed’. The expressed 
continuous attributes are encoded as centering the selected 
attribute value [seed-intervalLength/2, seed+intervalLength/2], 
where intervalLength is randomly initialized with uniform 
distribution between 25% and 75% of the domain size. Nominal 
attribute values are exact copy of ‘seed’. Class wise sampling 
without replacement is used to pick up training examples as 
described in [19]. After initialization, the rules in each 
chromosome are sorted based on their confidence values. 

 

4.3 Immigration and Emigration 
The emigration and immigration rates of each solution (island)are 
used to exchange classification rules between habitats. In our 
method, each SIV is a rule and a population member (island) is a 
ruleset. For a given island yi, we apply its immigration rate λi to 
each SIV to decide whether it should be modified. If a SIV is 
selected to be modified, then the donor island yj, is chosen 
randomly using the emigration rate: 

                                                
𝑗

∑ 𝑘
𝑁
𝑘

                                   (1) 

where N indicates the population size (number of islands) [1]. 
We have used a roulette wheel mechanism to select the donor 
island. The donor island modifies the selected SIV by replacing it 
with its own SIV. Our migration procedure (Algorithm 2) is 
similar to the procedure described in [1]. Note that, chromosomes 
have variable lengths, i.e. the number of SIVs are different in each 
island. Therefore, we have adopted an BBO migration operator 
where the ith SIV of the receiving island is   replaced by the ith 
SIV of the donor island [1]. In our algorithm, the ith rule of the 
immigrating island is replaced by the ith rule of the donor island 
(similar to [1]). In case the donor island has less than i rules, a 



randomly selected rule is chosen. The corresponding λ and µ 
values depend on the fitness of receiver and donor islands; they 
are updated in each generation. 

 
Algorithm 2 Migration in BBO-RM 

1: for each candidate solution yk do 
2 : for each SIV i of yk do 
3:       Use λk whether to immigrate to yk 
4:       if immigrating then 
5:          Use {µ} to probabilistically select  

         emigrating island, yj (equation 1) 
6:         if |SIV (yj)| ≤ i then 
7:            yk(i)   yj(i) 
8:        else 
9:          Randomly select a SIV x from yj 
               yk(i)  x 
10:        end if 
11:     end if 
12:  end for 
13: end for 

 
     We have used a linear migration model in our 

implementation. [15, 27]. The λ and µ values are calculated as 
follows: 

                                               𝜇𝑖  =
𝑁 − 𝑟𝑖

𝑁
                                      (2) 

                                             𝜆𝑖 =  1 −  𝜇𝑖                                         (3) 
     Here, ri   is the rank of ith individual based on fitness, and N 
the population size. The fittest individual has rank ri = 1 and the 
worst individual has ri = N. We have also incorporated elitism in 
order to retain the best solutions in the population. Immigration 
and emigration are used to probabilistically modify each non-
elite island in the population. 
     Fig. 2 illustrates the situation before and after migration among 
three islands. Island 1 is the fittest and island 3 is the least fit 
island. For simplicity reasons, the rules are indexed as r<island 
index><_><rule index>.   Thus r1_1 is the 1st rule of island 1, r2_1 
is the 1st rule of island 2, and so on. Consider the migration of 
island 3: the island has 6 rules, |SIV| = 6. For each rule, λ3 is used 
to decide whether it should be modified or not. If it is to be 
modified, then the donor island is chosen via roulette wheel 
selection (Lines 5-6 of Algorithm 2). The donor island replaces the 
rule as per Lines 7-11 of Algorithm 2. In island 3, the second rule 
is replaced by the second rule of island 1 (Lines 7-8 of Algorithm 
2). The fourth rule is replaced by a randomly selected rule of island 
2, in this case r2_3. In this example, island 1 has not allowed any 
invasion, as it is the fittest island. The mutated rules are colored 
in purple and the migrated rules have the colors corresponding to 
its original island. 
 

4.4 Mutation 
The mutation operator is applied to each chromosome. The 
operator selects one rule and one expressed attribute randomly 
with uniform probability. If the selected attribute is continuous, 
the operator selects one interval bound and adds a randomly 

generated offset to the bound, of size (picked with uniform 
distribution) between -30% and 30% of the attribute domain. In 
case this procedure generates an inconsistent value pair, we 
simply swap the bounds [8]. If the mutation affects categorical 

 
Figure 2: Three islands before migration. Island 1(red) 

hosts 4 rules, island 2 (blue) hosts 3, and island 3 (green) 
hosts 6 rules. The habitat suitability index (HSI) measure 
the fitness of the individual islands. 

 
 attribute of the rule, a new value is assigned to the attribute, 
picked at random from the corresponding domain. After 
mutation, the rules in a chromosome are sorted again according 
to their confidence value. 
 

4.5 Fitness Function and Match Process 
To evaluate the performance of a ruleset, each training 
instance is compared with its rules. If any rule matches 
the instance, the rules class label indicates the predicted 
class label of the instance. Then this class label is 
compared to the actual known class of the data point in 
order to identify correctly classified instances. The first 
matching rule determines the class of an instance. Our 
matching strategy is similar to the Pittsburgh based approach used 
in GAssist [20]. We have also included a default class which is the 
majority class of the dataset. If no rule matches an instance, then 
the default class is assigned to the data point. Note that, the default 
class is not encoded in the ruleset. The purpose of introducing a 
default class is to ensure that every instance is assigned to a class 
label. The fitness of a chromosome is simply the ratio of correctly 
classified instances to the total number of training examples. 

 

5 EXPERIMENTAL RESULTS 
In the following, we describe the datasets, algorithms, and the 
experimental setup that was used for our evaluation. 
 
 



   
  
 

 

 
 

 

5.1 Dataset Properties 
We tested BBO-RM and other classifiers on 14 datasets from the 
UCI Machine Learning Repository [22]. In particular, we selected 
these datasets for their structural variety; each represents a 
different challenge for classifiers. Our test datasets have the 
following characteristics: all continuous attributes (wine, sonar), 
all categorical attributes (vote, breast-cancer), mixed categorical 
and continuous attributes (adult, australian), small instances (zoo), 
large instances (german, adult), small number of attributes (iris), 
large number of attributes (sonar), small number of classes (heart 
disease-statlog, breast cancer-Wisconsin, pima), large number of 
classes (zoo). The properties of dataset are listed in Table 1.  

5.2 Classification Algorithms 
To assess the performance of our algorithm we compare BBO-RM 
with eight other algorithms. As BBO-RM is a rule based classifier, 
we focus on comparisons with rule based classifiers. Among eight 
algorithms two are evolutionary based rule mining algorithms 
(GAssist, BioHEL), non-evolutionary rule miners (PART, RIPPER, 
Decision Table), and three well performing state-of-the art 
approaches (C4.5, Support Vector Machine, Random Forest). A 
brief description of the algorithms is given below: 

 
• C4.5 (J48):  Developed by Ross Quinlan, the C4.5 algorithm    

uses a decision tree for classification [32]. 
• PART: the algorithm for repeatedly generates partial decision 

trees and infers classification rules from these trees [21]. 
• RIPPER: the algorithm is an improvement of the incremental 

reduced   error pruning algorithm (IREP) [38]. 
• GAssist:  the algorithm evolves a population of individuals 

via a standard genetic algorithm. Each individual represents 
a complete and variable-length ruleset [20]. 

• BioHEL: the algorithm is designed to handle large-scale 
bioinformatic datasets. Its main structure is inherited from 
GAssist [8]. 

• Decision Table (DTable): the algorithm computes numeric 
predictions from decision trees and generates an ordered set 
of If-Then rules [35]. 

• Support Vector Machine (SVM): the algorithm employs linear 
hyperplanes to infer decision boundaries among classes [30]. 

• Random Forest (RF): the algorithm uses an ensemble of 
randomly constructed independent decision trees [34]. 

 
 

5.3 Parameters of BBO-RM 
Parameters of BBO-RM were tuned for optimum performance. We 
have used a population size = 50, elitism = 10, maximum number 
of generations = 100, and stagnation limit = 20. The other 
parameters are: mutation rate = 0.6, minimum and maximum 
number of attributes in a rule, attMin = 1 and attMax = 7, 
minimum and maximum number of rules in a ruleset rMin = 10, 
and rMax = 20. Datasets containing attributes less than seven uses 

attMax = all attributes (iris), attMax = 4, and rMin = 5 (thyroid 
gland) dataset.  

 
                Table 1: Characteristics of Datasets 
 

id Dataset #Ins. MV 
(%) 

#R #N #C 

adl adult 48842 7.4 8 6 2 

aus australian 690 0.6 6 9 2 

bre breast cancer 286 0.3 0 10 2 

wis breast-wisconsin 699 0.3 9 0 2 

ger german 1000 0.0 7 13 2 

h-s heart statlog 270 0.0 13 0 2 

hep hepatitis 155 5.6 6 13 2 
irs iris 150 0.0 4 0 3 
pim pima-indians 768 0.0 8 0 2 
son sonar 208 0.0 60 0 2 
thy thyroid-gland 215 0.0 5 0 3 
vot vote 435 5.6 0 6 2 
win wine 178 0.0 13 0 3 
zoo zoo 101 0.0 1 15 7 

 # Ins: Total number of instances; MV: Missing values; #R = 
Number of numerical attributes, #N = Number of Nominal 
attributes, #C = Number of classes. 

 

5.4 Experimental Set Up and Implementations 
In the case of data with missing values, we have removed the 
instances before partitioning to the approach described in [12].  
We also used Weka’s feature selection using information gain (IG) 
[36, 37]. To improve accuracy, we have removed attributes of zero 
IG values. Subsequently, stratified tenfold cross validation was 
used to partition our datasets into training and test datasets. The 
process was repeated twice; all the accuracies reported later in the 
paper are the average of the accuracies obtained in the 2×10 test 
sets. The results of GAssist and BioHEL have been obtained by 
using the implementations provided by the authors [23, 24]. The 
default parameters have been used in GAssist, except for the 
number of iteration is set to 1000 (instead of 500) as suggested by 
the author. BioHEL configuration of the code is set according to 
the best setting as reported by the author in [8]. The other 
algorithms are obtained from Weka version 3.8.1. The default 
parameter values were used for all algorithm in Weka with 10-
fold cross validation with two repetitions. BBO-RM is 
programmed in R script. To speed up the performance, we have  
used the RCpp package [40], which enables C++ code embedded 
in R. The experiments were performed on a Linux machine with 
Intel(R) Xeon(R) CPU processor running at 2.00 GHz with RedHat 
Linux (RHEL) 7 installed. 
 
 
 



 

 

5.5 Results and Analysis 
Table 2 compares the results of BBO-RM with 
the above algorithms. In addition, we have analyzed the results of 
BBORM, and other algorithms using Friedman test [29] for 
multiple comparison using BBO-RM as control algorithm. The 
average ranks and average accuracy values of each algorithm are 
shown. SVM and random forest each performs best in five 
datasets. BBO-RM outperforms other algorithms three datasets, 
J48 performs the best in one dataset. BBO-RM has the lowest 
average rank and also the highest average accuracy for these 14 
datasets. Random forest has lower average rank than SVM but its 
average accuracy is higher. To test if the observed differences in 
average ranks correspond to a significant difference in classifier 
performance, we computed the Friedman statistic 38.8797 and 
compared it with the associated critical values for Chi square 
distribution for significance levels α =0.05 (15.507) and α = 0.10 
(13.362). Since the Friedman statistic is greater than the 
associated critical values, there are significant differences among 
the analyzed classifiers, and additional post-hoc analysis is 
needed. We have used Bonferroni-Dunn’s test [31] for the control 
algorithm BBO-RM. According to [29], the performance of 
classifiers is significantly different if the corresponding average 
ranks differ by at least the critical difference, CD (defined in 
section 3.2.2 of [29]). For our comparison values CD = 2.82 and CD 
= 2.585 for α = 0.05 and α =0.10 respectively in the two measures 
considered. Fig. 3 shows a graphical representation of the 
Bonferroni-Dunn’s test with BBO-RM as control.  Each algorithm  
 
 

 

is represented by a bar whose height is proportional to its average 
ranking. If we choose BBO-RM as control algorithm, and sum its  
height with the critical difference obtained by Bonferroni-Dunn 
(CD value), the result gives us a threshold to decide which 
algorithms perform significantly worse than our control. The 
thresholds for α = 0.05 and α = 0.1 are shown as horizontal lines 
in Fig. 3. The test does not reveal a significant difference between 

 
Figure 3: Bonferroni-Dunn graphic for classification       
accuracy. 
 

Data                                                               Algorithms 

BBO-
RM 

PART GAssist BioHEL RIPPER DTable J48 RF SVM 

adl 83.29 84.24 84.8 82.45 83.88 85.09 85.25 83.19 85.06 
aus 86.08 83.70 86.96 81.00 85.22 84.71 85.65 87.39 85.51 

bre 76.88 69.78 71.45 67.28 72.04 74.17 75.38 69.65 70.12 

wis 95.82 93.77 94.13 94.91 93.49 92.35 94.28 95.07 95.85 

ger 72.80 71.35 70.8 70.5 72.35 73.00 71.85 75.40 76.05 

h-s 83.35 76.48 76.30 78.33 79.07 83.15 80.00 82.78 85.00 
hep 91.25 85.00 85.63 83.13 83.75 84.38 85.00 92.50 84.38 

irs 96.00 94.64 95.31 93.98 95.64 92.64 94.67 94.64 95.64 

pim 75.40 74.78 73.66 72.73 74.78 74.33 74.71 76.41 77.25 
son 76.69 75.25 74.76 70.97 75.27 70.71 79.85 80.13 77.71 

thy 95.09 94.64 91.10 92.47 93.47 92.07 92.75 95.12 89.56 

vot 97.62 96.32 96.30 94.20 96.33 95.69 96.56 96.34 96.77 

win 94.70 92.06 91.76 89.03 92.40 88.17 93.76 97.43 98.30 

zoo 94.55 93.14 93.09 90.59 88.73 87.73 92.64 93.09 96.05 

Avg. 
accuracy 

87.11 84.65 84.72 83.04 84.74 84.16 85.88 87.08 86.66 

Avg. rank 2.64 5.82 5.89 7.93 5.50 6.53 4.17 3.42 3.07 

        Boldface entries indicate the best value of the corresponding row. 
 

                      Table 2: Accuracy results of BBO-RM with other algorithms. 
 



   
  
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 4: CPU time for 14 datasets 
 
BBO-RM and J48, SVM and RF. However, remarkably, BBO-RM is 
significantly better than all rule based algorithms used in this 
experiment. BBO-RM beats PART, GAssist, BioHEL and Decision 
Table at both significance levels (α= 0.05 and α = 0.10) and RIPPER 
at the significance level α = 0.10. 

 
5.6 Running Time Analysis 
To illustrate the runtime behavior of our approach, Fig. 4 
displays the CPU execution time versus dataset. The datasets are 
sorted by their size, and time is plotted on a log scale (base 10). 
The time on Y axis is the average execution time of training and 
testing one cross validation fold. The size of the dataset reported 
is the size after removing instances of missing values. It can be 
observed that the elapsed time is not directly proportional to the 
size of the dataset, the number of attributes also influences the 
execution time. Evolutionary algorithms are naturally slower than 
non-evolutionary counterparts. 

 

6 CONCLUSIONS AND FUTURE WORK 
In this paper, we describe BBO-RM, an approach that uses an 
evolutionary BBO algorithm to generate rule sets for rule-based 
classification. The performance of BBO-RM on benchmark 
datasets demonstrates its suitability for solving practical 
classification problems. In our evaluation, BBO-RM has 
outperformed, or matched within 2%, eight competing approaches 
in eleven of fourteen test datasets. BBO-RM has the lowest 
average rank as well as the highest average accuracy. Using 
Bonferroni-Dunn test, we were able to show that these results  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
reflect a statistical significant difference in classifier performance 
between BBO-RM and all tested rule-based approaches. This 
makes our algorithm a promising new classification approach, in 
particular in situations where rule-based classification is required. 
We hypothesize that the good performance of our algorithm 
results from BBO-RM’s unique way of optimizing rules. In our  
current implementation, BBO-RM uses Pittsburgh-style learning 
classification system (LCS) encoding, a representation that 
appears to be well-suited for classification and data mining 
applications [41]. Pitt-style returns the best set of rules, and not the 
set of best rules [4]. In the future, we plan to investigate the 
performance of the alternative Michigan chromosome encoding 
in combination with iterative rule learning (IL) [8]. IL creates one 
rule at a time. After a new rule is obtained, the training examples 
that are covered by this rule are removed from the training set 
thus the EA is forced to explore other areas of the search space to 
learn additional rules. In each iteration, the best rule is inserted 
into the ruleset. Another possible drawback of EAs, that we have 
encountered in few occasions, is the convergence of the entire  
population towards similar individuals [4]. To promote diversity 
in the solution, we plan to use classification rules of the k best 
rulesets to assemble a more diverse classifier. Another possible 
research direction is to explore the effect of different migration 
models, see [15] for a list of possible alternatives. 
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