
Biogeography-Based
Rule Mining for Classification

 Effat Farhana Steffen Heber

 Department of Computer Science Department of Computer Science
 North Carolina State University

 Raleigh, United States
 efarhan@ncsu.edu

 North Carolina State University
 Raleigh, United States
 sheber@ncsu.edu

ABSTRACT
Rule-based classification is a popular approach for solving real
world classification problems. Once suitable rules have been
obtained, rule-based classifiers are easy to deploy and explain. In
this paper, we describe an approach that uses biogeography-based
optimization (BBO) to compute rule sets that maximize predictive
accuracy. BBO is an evolutionary algorithm inspired by the
migration patterns of species between the islands of an
archipelago. In our implementation, each species corresponds to
a classification rule, each island is occupied by multiple species
and corresponds to a classifier, and the fitness of an island is
computed as the predictive classification accuracy of the
corresponding classifier. The archipelago evolves via mutation,
selection, and migration of species between islands. Successful
islands have a decreased immigration rate and an increased
emigration rate. In general, such islands tend to resist invasion
and to colonize less successful islands. This results in an evolving
set of habitats that corresponds to a population of classifiers. We
demonstrate the effectiveness of our approach by comparing it to
several traditional and evolutionary based state-of- the-art
classifiers.

CCS CONCEPTS
•Computing Methodologies →Machine Learning

→Supervised Learning → Supervised Learning by Classification

KEYWORDS
Classification, Supervised Learning, Evolutionary Algorithm

1 INTRODUCTION

The goal of rule-based classification is to learn a set of
classification rules that assigns new data points a class label.
Classification rules have the form IF P THEN C, where P is a

learning, fuzzy logic, or neural networks to extract classification
rules for rule-based classification, see [33] for a detailed
conjunction of data attribute tests and C is the class label. Several
approaches have been developed that genetic algorithms, machine
description. Once suitable rules have been extracted, rule-based
classifiers are easy to understand, deploy, and explain. Due to its
versatility, rule-based classification is a popular approach for
solving real world classification problems, examples include
analyzing stock exchange data to decide whether to buy or sell a
stock [28], prostate tissue classification for recognizing cancer [9],
and credit risk evaluation [39].
 Evolutionary algorithms (EAs) are population-based
metaheuristic optimization algorithms inspired by the principles
of biological evolution. EAs have been widely used to learn
classification rules, either through supervised learning or
unsupervised learning [5]. In EAs, an initial population of
candidate solutions is generated. Subsequently, the initial
population evolves through multiple generations until a stopping
criterion is met. During each iteration, a new population evolves
from the previous population. The quality of each solution is
evaluated, well performing solution are used to breed new
candidate solutions, and poorly performing solutions are replaced.
The success of the algorithm depends on the way that individuals
(that is, candidate solutions) share information and collaborate
with each other to move through the search space toward the
optimum solution. Evolutionary rule-based systems [4] are a type
of genetics based machine learning (GBML) that use sets of rules
for knowledge representation [25]. In standard GBML, parents are
selected randomly and a new population originates via crossover.
There are two major rule-based GBML approaches: the Michigan
approach and the Pittsburgh approach [7]. In the Michigan
approach, each rule is encoded by an entire chromosome. On the
other hand, in the Pittsburgh approach a single chromosome
encodes an entire classifier that might consist of multiple
classification rules.
 In this paper, we describe an approach that uses
biogeography-based optimization (BBO) to compute rule sets that
maximize predictive accuracy. BBO is an evolutionary algorithm
inspired by changes in the distribution of biological species over
time and space [6]. We propose BBO-based rule miner (BBO-RM)
to extract classification rules for a GBML system with Pittsburgh
encoding. In BBO-RM, each island hosts multiple species

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
GECCO '17, July 15-19, 2017, Berlin, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4920-8/17/07…$15.00
http://dx.doi.org/10.1145/3071178.3071221

mailto:efarhan@ncsu.edu
mailto:Permissions@acm.org
http://dx.doi.org/10.1145/3071178.3071221

(classification rules) and encodes a classifier. Classifiers with high
predictive accuracies correspond to islands with high fitness.
Islands with lower fitness accept species from better performing
islands, but they have a lower probability of sharing their species
with others. In contrast, well performing islands tend to resist
immigration and share their species generously. Over time, the
average fitness of the population increases via mutation, selection
and migration. We demonstrate the effectiveness of our approach
by comparing it to several traditional and evolutionary based
state-of the-art classifiers using fourteen selected datasets from
UCI Machine Learning Repository [22].
 The rest of the paper is organized as follows. First,
Section 2 summarizes related work. Next, Section 3 describes the
BBO framework. Section 4 contains a detailed description of BBO-
RM algorithm. Section 5 presents data sets, evaluation metrics and
computational experiments. Conclusions and future work are
described in Section 6.

2 RELATED WORKS
Due to their flexibility, EAs have been used to solve problems in
various different application areas, ranging from art and biology
to operations research and robotics [52]. Here, we will focus
mainly on data mining and classification tasks. Several EAs use
the Michigan encoding, for example XCS [13], and XCS with real
values as input (XCSR, [5]). These systems act as reinforcement
learning agents [2]. Despite the success of these Michigan-based
system, Pittsburgh encoding seems to be particularly well-suited
for classification and data mining applications [41]. Systems that
use Pittsburgh encoding include the Genetic Algorithm Based
Concept Learner (GABIL, [11]), Genetic-Based Inductive Learning
(GIL, [10]), Genetic clASSIfier sySTem (GAssist, [20]), Ordered

incremental genetic algorithm (OIGA, [46]), and Incremental learning with

genetic algorithms (ILGA, [47]). Hybrid GBML systems combine both
encodings [50-51]. Often EA’s use iterative rule learning to
construct classification rules. During iterative rule learning the
algorithm learns rule by rule sequentially and removes all the
examples covered (matched) by a new rule from the training set.
Systems that uses iterative rule learning include BioHEL [8], NAX
[9], SLAVE [42], and HIDER [43]. In addition, several alternative
methods for constructing classification rules have been described,
examples include evolutionary programming, genetic
programming [44-46]. Beyond EAs that evolve only one
population, more complex co-evolutionary classification
approaches that evolve multiple competing or cooperating
populations in parallel have been explored [12]. A comprehensive
review of EA based classifiers can be found in [14, 41].
 To the best of our knowledge, this paper is the first application
of the evolutionary BBO algorithm to rule-based classification.
Bhugra and colleagues describe an application of BBO in
combination with association rule mining [26]. In their work, the
Apriori algorithm is used to generate frequent itemsets together
with the corresponding association rules. Subsequently, BBO is
used to enhance the quality of the derived rule set. In contrast, our
method uses the (EA) BBO algorithm for classification rule
extraction.

3 BBO FRAMEWORK
Biogeography based optimization is an example of how
a natural process can be modeled to solve optimization
problems [6]. The approach has been applied to approximate
several benchmark functions [15], and to solve various real world
problems including economic load dispatch [16], wireless network
power allocation [17], flexible job shop scheduling [18] and many
others. The BBO algorithm uses the migration patterns of species
between the islands of an archipelago to evolve successful
solutions. Each island represents a candidate solution, and
contains a number of decision variables denoted as suitability
index variables (SIVs). The quality of a solution is measured by
the habitat suitability index (HSI) of the island, analogously to the
fitness function in EAs. Like other EAs, each candidate solution in
BBO probabilistically shares decision variables with other
candidate solutions to improve the fitness of candidate solutions.
Each island immigrates (receives) decision variables from other
islands based on its immigration rate, λ, and emigrates
(donates/shares) decision variables to other islands based on its
emigration rate, µ. A successful island has a high emigration rate
and a low immigration rate. Conversely, a poor island has a low
emigration rate and a high immigration rate. Following [49], the
main steps of the BBO algorithm are described below:

1. Initialize population (n islands).
2. Compute island modification probabilities (λ and µ).
3a. For each island use the corresponding immigration rate λ to
probabilistically decide which islands will receive SIVs.
3b. Use emigration rates µ together with roulette wheel selection
to choose SIV donor islands for the islands selected in 3a.
3c. For each selected pair of emigrating/immigrating island,
migrate a decision variable (SIV) from the emigrating to the
immigrating island.
4. Mutate islands.
5. Update HIS of each island.
6. Go to step 2 until termination criterion is met.

 BBO differs from other EAs in important aspects. The notion
of ‘reproduction’ is absent in BBO. Unlike most other EAs where
offspring is the compilation of two parental individuals from the
previous generation, in BBO a new generation is produced by
modifying the current generation via species migration. As a
consequence, in contrast to most EAs, the initial population
survives forever, it does not ‘die’ at the end of each generation.

4 BBO RULE MINING ALGORITHM
In the following Algorithm 1 we give an overview of our
BBO-RM approach, followed by a detailed description of the used
encoding mechanism (Section 4.1), our initialization strategy
(Section 4.2), migration and mutation operators (Sections 4.3 and
4.4), our fitness function (Section 4.5), and the stopping criteria
(Section 4.6). We will refer to chromosomes as islands in the
algorithm.

Algorithm 1 Overview of BBO-RM

1: Initialize the population.
2: Compute the fitness of each island.
3: repeat
4: Save the best (elite) k islands.
5: Calculate immigration rate λ and emigration

 rate µ based on the fitness of
 corresponding island.

6: Apply BBO migration operator
7: Apply mutation operator.
8: Compute the fitness of islands.
9: Replace the worst k islands with the elite
 islands of the previous generation.
10: until stopping criteria is fulfilled

4.1 Encoding Mechanism
An individual is represented by a set of ruleN different rules. The
minimum and maximum number of rules a chromosome can
have is determined by the values rMin, and rMax, respectively.
The value ruleN is sampled from the range [rMin; rMax]. A rule
is encoded as IF < conditions > THEN < classLabel >, where
conditions are conjunctions of a set of conditions. Each condition
is encoded as a triple:

< 𝐴𝑡𝑡𝑟𝐼𝑛𝑑𝑒𝑥 > < = > < 𝑉𝑎𝑙𝑗 > [for nominal attribute]
< 𝐴𝑡𝑡𝑟𝐼𝑛𝑑𝑒𝑥 > < 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 > < 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 >
[for numerical attribute]

 AttrIndex is the positional index of the attribute in the
attribute-list. Fig. 1 illustrates a rule encoding. Assume that ith
attribute has been selected. If the attribute is numerical, then Li
and Ui are lower and upper bounds of the associated intervals of
the attribute. A data object will satisfy the condition if < Li ≤ ai ≤
Ui >, where ai is the value of attribute i for the data object. In case
of nominal attribute, Valij denotes the jth value of the domain of
ith attribute and the condition checks for equality of ai and Valij.
Rules have variable lengths. The number of conditions (attributes)
expressed in a rule is denoted by attN. This value is sampled
within the range of [attMin; attMax]. Here attMin and attMax
denote the minimum and maximum number of attributes that a
rule can contain. Next, we choose relevant attributes of a rule by
uniformly sampling attN values from the attribute lists. The
maximum number of rules in a ruleset is bounded by rMax value.
It should be noted that the parameter rMax prevents our system
from bloating, a common problem in variable length
representation of GA [20].

4.2 Initialization Strategy
We followed a mixed initialization approach, as suggested in GIL
[10]. For each chromosome, 20% of all rules are instantiated
randomly. The remaining rules are instantiated using training
examples as seeds. At the beginning of the initialization stage of a
rule, we determine the number of expressed attributes in it, attN.

During random initialization, the upper and lower bounds of each
real valued expressed attribute are assigned randomly within the
domain size or a random categorical value is chosen.

 Figure 1: Structure of a rule, att  attribute. att1 is nominal
and attN is numerical attribute. C is the class label. Rule is
interpreted as att1  att2  ...  attN  C

 To determine the class label for such rules, we follow the
approach suggested by Freitas [4]. For each class, we calculate
how many training instances a newly generated rule covers. The
class label that maximizes the fitness of the rule is chosen as the
rule consequent. For rules instantiated by training examples, we
follow a similar approach as described in [8]. The training
examples are chosen randomly to act as ‘seed’. The expressed
continuous attributes are encoded as centering the selected
attribute value [seed-intervalLength/2, seed+intervalLength/2],
where intervalLength is randomly initialized with uniform
distribution between 25% and 75% of the domain size. Nominal
attribute values are exact copy of ‘seed’. Class wise sampling
without replacement is used to pick up training examples as
described in [19]. After initialization, the rules in each
chromosome are sorted based on their confidence values.

4.3 Immigration and Emigration
The emigration and immigration rates of each solution (island)are
used to exchange classification rules between habitats. In our
method, each SIV is a rule and a population member (island) is a
ruleset. For a given island yi, we apply its immigration rate λi to
each SIV to decide whether it should be modified. If a SIV is
selected to be modified, then the donor island yj, is chosen
randomly using the emigration rate:

𝑗

∑ 𝑘
𝑁
𝑘

 (1)

where N indicates the population size (number of islands) [1].
We have used a roulette wheel mechanism to select the donor
island. The donor island modifies the selected SIV by replacing it
with its own SIV. Our migration procedure (Algorithm 2) is
similar to the procedure described in [1]. Note that, chromosomes
have variable lengths, i.e. the number of SIVs are different in each
island. Therefore, we have adopted an BBO migration operator
where the ith SIV of the receiving island is replaced by the ith
SIV of the donor island [1]. In our algorithm, the ith rule of the
immigrating island is replaced by the ith rule of the donor island
(similar to [1]). In case the donor island has less than i rules, a

randomly selected rule is chosen. The corresponding λ and µ
values depend on the fitness of receiver and donor islands; they
are updated in each generation.

Algorithm 2 Migration in BBO-RM

1: for each candidate solution yk do
2 : for each SIV i of yk do
3: Use λk whether to immigrate to yk
4: if immigrating then
5: Use {µ} to probabilistically select

 emigrating island, yj (equation 1)
6: if |SIV (yj)| ≤ i then
7: yk(i)  yj(i)
8: else
9: Randomly select a SIV x from yj
 yk(i)  x
10: end if
11: end if
12: end for
13: end for

 We have used a linear migration model in our

implementation. [15, 27]. The λ and µ values are calculated as
follows:

 𝜇𝑖 =
𝑁 − 𝑟𝑖

𝑁
 (2)

 𝜆𝑖 = 1 − 𝜇𝑖 (3)
 Here, ri is the rank of ith individual based on fitness, and N
the population size. The fittest individual has rank ri = 1 and the
worst individual has ri = N. We have also incorporated elitism in
order to retain the best solutions in the population. Immigration
and emigration are used to probabilistically modify each non-
elite island in the population.
 Fig. 2 illustrates the situation before and after migration among
three islands. Island 1 is the fittest and island 3 is the least fit
island. For simplicity reasons, the rules are indexed as r<island
index><_><rule index>. Thus r1_1 is the 1st rule of island 1, r2_1
is the 1st rule of island 2, and so on. Consider the migration of
island 3: the island has 6 rules, |SIV| = 6. For each rule, λ3 is used
to decide whether it should be modified or not. If it is to be
modified, then the donor island is chosen via roulette wheel
selection (Lines 5-6 of Algorithm 2). The donor island replaces the
rule as per Lines 7-11 of Algorithm 2. In island 3, the second rule
is replaced by the second rule of island 1 (Lines 7-8 of Algorithm
2). The fourth rule is replaced by a randomly selected rule of island
2, in this case r2_3. In this example, island 1 has not allowed any
invasion, as it is the fittest island. The mutated rules are colored
in purple and the migrated rules have the colors corresponding to
its original island.

4.4 Mutation
The mutation operator is applied to each chromosome. The
operator selects one rule and one expressed attribute randomly
with uniform probability. If the selected attribute is continuous,
the operator selects one interval bound and adds a randomly

generated offset to the bound, of size (picked with uniform
distribution) between -30% and 30% of the attribute domain. In
case this procedure generates an inconsistent value pair, we
simply swap the bounds [8]. If the mutation affects categorical

Figure 2: Three islands before migration. Island 1(red)

hosts 4 rules, island 2 (blue) hosts 3, and island 3 (green)
hosts 6 rules. The habitat suitability index (HSI) measure
the fitness of the individual islands.

 attribute of the rule, a new value is assigned to the attribute,
picked at random from the corresponding domain. After
mutation, the rules in a chromosome are sorted again according
to their confidence value.

4.5 Fitness Function and Match Process
To evaluate the performance of a ruleset, each training
instance is compared with its rules. If any rule matches
the instance, the rules class label indicates the predicted
class label of the instance. Then this class label is
compared to the actual known class of the data point in
order to identify correctly classified instances. The first
matching rule determines the class of an instance. Our
matching strategy is similar to the Pittsburgh based approach used
in GAssist [20]. We have also included a default class which is the
majority class of the dataset. If no rule matches an instance, then
the default class is assigned to the data point. Note that, the default
class is not encoded in the ruleset. The purpose of introducing a
default class is to ensure that every instance is assigned to a class
label. The fitness of a chromosome is simply the ratio of correctly
classified instances to the total number of training examples.

5 EXPERIMENTAL RESULTS
In the following, we describe the datasets, algorithms, and the
experimental setup that was used for our evaluation.

5.1 Dataset Properties
We tested BBO-RM and other classifiers on 14 datasets from the
UCI Machine Learning Repository [22]. In particular, we selected
these datasets for their structural variety; each represents a
different challenge for classifiers. Our test datasets have the
following characteristics: all continuous attributes (wine, sonar),
all categorical attributes (vote, breast-cancer), mixed categorical
and continuous attributes (adult, australian), small instances (zoo),
large instances (german, adult), small number of attributes (iris),
large number of attributes (sonar), small number of classes (heart
disease-statlog, breast cancer-Wisconsin, pima), large number of
classes (zoo). The properties of dataset are listed in Table 1.

5.2 Classification Algorithms
To assess the performance of our algorithm we compare BBO-RM
with eight other algorithms. As BBO-RM is a rule based classifier,
we focus on comparisons with rule based classifiers. Among eight
algorithms two are evolutionary based rule mining algorithms
(GAssist, BioHEL), non-evolutionary rule miners (PART, RIPPER,
Decision Table), and three well performing state-of-the art
approaches (C4.5, Support Vector Machine, Random Forest). A
brief description of the algorithms is given below:

• C4.5 (J48): Developed by Ross Quinlan, the C4.5 algorithm

uses a decision tree for classification [32].
• PART: the algorithm for repeatedly generates partial decision

trees and infers classification rules from these trees [21].
• RIPPER: the algorithm is an improvement of the incremental

reduced error pruning algorithm (IREP) [38].
• GAssist: the algorithm evolves a population of individuals

via a standard genetic algorithm. Each individual represents
a complete and variable-length ruleset [20].

• BioHEL: the algorithm is designed to handle large-scale
bioinformatic datasets. Its main structure is inherited from
GAssist [8].

• Decision Table (DTable): the algorithm computes numeric
predictions from decision trees and generates an ordered set
of If-Then rules [35].

• Support Vector Machine (SVM): the algorithm employs linear
hyperplanes to infer decision boundaries among classes [30].

• Random Forest (RF): the algorithm uses an ensemble of
randomly constructed independent decision trees [34].

5.3 Parameters of BBO-RM
Parameters of BBO-RM were tuned for optimum performance. We
have used a population size = 50, elitism = 10, maximum number
of generations = 100, and stagnation limit = 20. The other
parameters are: mutation rate = 0.6, minimum and maximum
number of attributes in a rule, attMin = 1 and attMax = 7,
minimum and maximum number of rules in a ruleset rMin = 10,
and rMax = 20. Datasets containing attributes less than seven uses

attMax = all attributes (iris), attMax = 4, and rMin = 5 (thyroid
gland) dataset.

 Table 1: Characteristics of Datasets

id Dataset #Ins. MV
(%)

#R #N #C

adl adult 48842 7.4 8 6 2

aus australian 690 0.6 6 9 2

bre breast cancer 286 0.3 0 10 2

wis breast-wisconsin 699 0.3 9 0 2

ger german 1000 0.0 7 13 2

h-s heart statlog 270 0.0 13 0 2

hep hepatitis 155 5.6 6 13 2
irs iris 150 0.0 4 0 3
pim pima-indians 768 0.0 8 0 2
son sonar 208 0.0 60 0 2
thy thyroid-gland 215 0.0 5 0 3
vot vote 435 5.6 0 6 2
win wine 178 0.0 13 0 3
zoo zoo 101 0.0 1 15 7

 # Ins: Total number of instances; MV: Missing values; #R =
Number of numerical attributes, #N = Number of Nominal
attributes, #C = Number of classes.

5.4 Experimental Set Up and Implementations
In the case of data with missing values, we have removed the
instances before partitioning to the approach described in [12].
We also used Weka’s feature selection using information gain (IG)
[36, 37]. To improve accuracy, we have removed attributes of zero
IG values. Subsequently, stratified tenfold cross validation was
used to partition our datasets into training and test datasets. The
process was repeated twice; all the accuracies reported later in the
paper are the average of the accuracies obtained in the 2×10 test
sets. The results of GAssist and BioHEL have been obtained by
using the implementations provided by the authors [23, 24]. The
default parameters have been used in GAssist, except for the
number of iteration is set to 1000 (instead of 500) as suggested by
the author. BioHEL configuration of the code is set according to
the best setting as reported by the author in [8]. The other
algorithms are obtained from Weka version 3.8.1. The default
parameter values were used for all algorithm in Weka with 10-
fold cross validation with two repetitions. BBO-RM is
programmed in R script. To speed up the performance, we have
used the RCpp package [40], which enables C++ code embedded
in R. The experiments were performed on a Linux machine with
Intel(R) Xeon(R) CPU processor running at 2.00 GHz with RedHat
Linux (RHEL) 7 installed.

5.5 Results and Analysis
Table 2 compares the results of BBO-RM with
the above algorithms. In addition, we have analyzed the results of
BBORM, and other algorithms using Friedman test [29] for
multiple comparison using BBO-RM as control algorithm. The
average ranks and average accuracy values of each algorithm are
shown. SVM and random forest each performs best in five
datasets. BBO-RM outperforms other algorithms three datasets,
J48 performs the best in one dataset. BBO-RM has the lowest
average rank and also the highest average accuracy for these 14
datasets. Random forest has lower average rank than SVM but its
average accuracy is higher. To test if the observed differences in
average ranks correspond to a significant difference in classifier
performance, we computed the Friedman statistic 38.8797 and
compared it with the associated critical values for Chi square
distribution for significance levels α =0.05 (15.507) and α = 0.10
(13.362). Since the Friedman statistic is greater than the
associated critical values, there are significant differences among
the analyzed classifiers, and additional post-hoc analysis is
needed. We have used Bonferroni-Dunn’s test [31] for the control
algorithm BBO-RM. According to [29], the performance of
classifiers is significantly different if the corresponding average
ranks differ by at least the critical difference, CD (defined in
section 3.2.2 of [29]). For our comparison values CD = 2.82 and CD
= 2.585 for α = 0.05 and α =0.10 respectively in the two measures
considered. Fig. 3 shows a graphical representation of the
Bonferroni-Dunn’s test with BBO-RM as control. Each algorithm

is represented by a bar whose height is proportional to its average
ranking. If we choose BBO-RM as control algorithm, and sum its
height with the critical difference obtained by Bonferroni-Dunn
(CD value), the result gives us a threshold to decide which
algorithms perform significantly worse than our control. The
thresholds for α = 0.05 and α = 0.1 are shown as horizontal lines
in Fig. 3. The test does not reveal a significant difference between

Figure 3: Bonferroni-Dunn graphic for classification
accuracy.

Data Algorithms

BBO-
RM

PART GAssist BioHEL RIPPER DTable J48 RF SVM

adl 83.29 84.24 84.8 82.45 83.88 85.09 85.25 83.19 85.06
aus 86.08 83.70 86.96 81.00 85.22 84.71 85.65 87.39 85.51

bre 76.88 69.78 71.45 67.28 72.04 74.17 75.38 69.65 70.12

wis 95.82 93.77 94.13 94.91 93.49 92.35 94.28 95.07 95.85

ger 72.80 71.35 70.8 70.5 72.35 73.00 71.85 75.40 76.05

h-s 83.35 76.48 76.30 78.33 79.07 83.15 80.00 82.78 85.00
hep 91.25 85.00 85.63 83.13 83.75 84.38 85.00 92.50 84.38

irs 96.00 94.64 95.31 93.98 95.64 92.64 94.67 94.64 95.64

pim 75.40 74.78 73.66 72.73 74.78 74.33 74.71 76.41 77.25
son 76.69 75.25 74.76 70.97 75.27 70.71 79.85 80.13 77.71

thy 95.09 94.64 91.10 92.47 93.47 92.07 92.75 95.12 89.56

vot 97.62 96.32 96.30 94.20 96.33 95.69 96.56 96.34 96.77

win 94.70 92.06 91.76 89.03 92.40 88.17 93.76 97.43 98.30

zoo 94.55 93.14 93.09 90.59 88.73 87.73 92.64 93.09 96.05

Avg.
accuracy

87.11 84.65 84.72 83.04 84.74 84.16 85.88 87.08 86.66

Avg. rank 2.64 5.82 5.89 7.93 5.50 6.53 4.17 3.42 3.07

 Boldface entries indicate the best value of the corresponding row.

 Table 2: Accuracy results of BBO-RM with other algorithms.

Figure 4: CPU time for 14 datasets

BBO-RM and J48, SVM and RF. However, remarkably, BBO-RM is
significantly better than all rule based algorithms used in this
experiment. BBO-RM beats PART, GAssist, BioHEL and Decision
Table at both significance levels (α= 0.05 and α = 0.10) and RIPPER
at the significance level α = 0.10.

5.6 Running Time Analysis
To illustrate the runtime behavior of our approach, Fig. 4
displays the CPU execution time versus dataset. The datasets are
sorted by their size, and time is plotted on a log scale (base 10).
The time on Y axis is the average execution time of training and
testing one cross validation fold. The size of the dataset reported
is the size after removing instances of missing values. It can be
observed that the elapsed time is not directly proportional to the
size of the dataset, the number of attributes also influences the
execution time. Evolutionary algorithms are naturally slower than
non-evolutionary counterparts.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we describe BBO-RM, an approach that uses an
evolutionary BBO algorithm to generate rule sets for rule-based
classification. The performance of BBO-RM on benchmark
datasets demonstrates its suitability for solving practical
classification problems. In our evaluation, BBO-RM has
outperformed, or matched within 2%, eight competing approaches
in eleven of fourteen test datasets. BBO-RM has the lowest
average rank as well as the highest average accuracy. Using
Bonferroni-Dunn test, we were able to show that these results

reflect a statistical significant difference in classifier performance
between BBO-RM and all tested rule-based approaches. This
makes our algorithm a promising new classification approach, in
particular in situations where rule-based classification is required.
We hypothesize that the good performance of our algorithm
results from BBO-RM’s unique way of optimizing rules. In our
current implementation, BBO-RM uses Pittsburgh-style learning
classification system (LCS) encoding, a representation that
appears to be well-suited for classification and data mining
applications [41]. Pitt-style returns the best set of rules, and not the
set of best rules [4]. In the future, we plan to investigate the
performance of the alternative Michigan chromosome encoding
in combination with iterative rule learning (IL) [8]. IL creates one
rule at a time. After a new rule is obtained, the training examples
that are covered by this rule are removed from the training set
thus the EA is forced to explore other areas of the search space to
learn additional rules. In each iteration, the best rule is inserted
into the ruleset. Another possible drawback of EAs, that we have
encountered in few occasions, is the convergence of the entire
population towards similar individuals [4]. To promote diversity
in the solution, we plan to use classification rules of the k best
rulesets to assemble a more diverse classifier. Another possible
research direction is to explore the effect of different migration
models, see [15] for a list of possible alternatives.

REFERENCES
[1] H. Ma, D. Simon, M. Fei, X. Shu, and Z. Chen, 2014.
Hybrid biogeography-based evolutionary algorithms, Engineering Applications of
Artificial Intelligence, 30 (2014), 213-224.

[2] R. S. Sutton and A. G. Barto, 1998. Reinforcement Learning: An Introduction, MIT
Press, Cambridge, MA, USA.
[3] G. H. John, and P. Langley, 1995. Estimating Continuous Distributions in Bayesian
Classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, San Francisco, CA, USA, 338-345.
[4] A. A. Freitas, 2002. Data Mining and Knowledge Discovery with Evolutionary
Algorithms, Springer-Verlag New York, Inc., Secaucus, NJ, USA.
[5] S. W. Wilson, 2000. Get Real! XCS with Continuous-Valued Inputs. In Learning
Classifier Systems, From Foundations to Applications, London, UK, 2000, 209-222.
[6] D. Simon, 2008. Biogeography-based optimization, IEEE Transactions on
Evolutionary Computation, 12, 6, 702-713.
[7] Z. Michalewicz, 1996. Genetic Algorithms + Data Structures = Evolution Programs
(3rd Ed.), Springer-Verlag London, UK.
[8] J. Bacardit, E. K. Burke, and N. Krasnogor, 2009. Improving the scalability of rule-
based evolutionary learning, Memetic Computing, 1,1, (2009), 55-67.
[9] X. Llorà, A. Priya, and R. Bhargava, 2009. Observerinvariant histopathology using
genetics-based machine learning, Natural Computing, 8,1, (2009), 101-120.
[10] C. Janikow, 1991. Inductive learning of decision rules in attribute-based examples:
a knowledge-intensive genetic algorithm approach. PhD dissertation. University of
North Carolina at Chapel Hill.
[11] K. A. D. Jong, and W. M. Spears, 1991. Learning Concept Classification Rules
Using Genetic Algorithms. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence, San Francisco, CA, USA, 651-656.
[12] K. C. Tan, Q. Yu, and J. H. Ang, 2006. A coevolutionary algorithm for rules
discovery in data mining, Int’l Journal of Systems Science, 37,1, (2006), 835-886.
[13] S. W. Wilson, 1995. Classifier Fitness Based on Accuracy,
Evol. Comput., 3,2, (1995), 149-175.
[14] A. Fernandez, S. Garcia, J. Luengo, E. Bernado Mansilla, and F. Herrera, 2010.
Genetics-Based Machine Learning for Rule Induction: State of the Art, Taxonomy,
and Comparative Study, IEEE Trans. Evolut. Comput., 14, (2010), 913-941.
[15] H. Ma, 2014. An analysis of the equilibrium of migration
models for biogeography based optimization, Inf. Sci, 180,18, (2010), 3444-3464.
[16] A. Bhattacharya, and P. Chattopadhyay, 2010. Hybrid differential evolution with
biogeography-based optimization for solution of economic load dispatch, IEEE Trans.
Power Syst., 25, 4, (2010), 1955-1964.
[17] I. Boussad, A. Chatterjee, P. Siarry, and M. A. Nacer, 2011. Two-stage update
biogeography based optimization using differential evolution algorithm (DBBO),
Comput. Oper. Res., 38, 8, (2011), 1188-1198.
[18] S. Rahmati, and M. Zandieh, 2012. A new biogeography based optimization
(BBO) algorithm for the flexible job shop scheduling problem., Int. J. Adv. Manuf.
Technol., 58, 9, (2012), 1115-1129.
[19] J. Bacardit, 2005. Analysis of the initialization stage of
a Pittsburgh approach learning classifier system. In GECCO 2005: Proceedings of the
Genetic and Evolutionary Computation Conference, 2005, 1843-1850.
[20] J. Bacardit, 2004. Pittsburgh genetics-based machine learning in the data mining
era: Representations, generalization, and run-time. PhD dissertation, Ramon Lull
University, Barcelona, Spain.
[21] E. Frank, and I. H. Witten, 1998. Generating Accurate Rule
Sets Without Global Optimization. In Proceedings of the Fifteenth International
Conference on Machine Learning, 144-151.
[22] C. L. Blake, E. Keogh and C. J. Merz, 1998. UCI repository of machine learning
databases., www.ics.uci.edu/mlearn/MLRepository.html.
[23] Bioinformatics-oriented Hierarchical Evolutionary Learning, 2009.
http://ico2s.org/software/biohel.html.
[24] GAssist Genetic Classifier System 2004. http://ico2s.org/software/gassist.html.
[25] J. J. Grefenstette, 1993. Genetic Algorithms and Machine Learning. In Proceedings
of the Sixth Annual Conference on Computational Learning Theory, 3-4.
[26] D. Bhugra, S. Goel, and V. Singhania, 2013. Association
rule analysis using biogeography based optimization. In Computer Communication
and Informatics (ICCCI), 1-5.
[27] G. Khademi, H. Mohammadi, and D. Simon, 2016. Hybrid Invasive Weed /
BiogeographyBased Optimization, Submitted for publication,
http://embeddedlab.csuohio.edu/BBO/IWO.html.
[28] Y. W. C. Chien, and Y. L. Chen, 2010. Mining associative classification rules with
stock trading data A GA-based method, Knowledge-Based Systems, 23,6,
(2010), 605-614.
[29] J. Demˇsar, 2006. Statistical Comparisons of Classifiers over Multiple Data Sets,
J. Mach. Learn. Res., 7 ,2006, 1-30.
[30] C. N. Shawe- Taylor J, 2000. Support Vector Machines and Other Kernel-based
Methods. Cambridge, UK: Cambridge University Press.
[31] O. J. Dunn, 1961. Multiple comparisons among means, Journal of the American
Statistical Association, 56 (1961), 52-64.

[32] J. R. Quinlan, 1993. C4.5: Programs for Machine Learning, Morgan Kaufman
Publishers Inc., San Fransisco, CA, USA.
[33] W. Duch, N. Jankowski, K. Grabczewski, and R. Adamczak, 2000. Optimization
and Interpretation of Rule based Classifiers. In Proceedings of the IIS’2000 Symposium
on Intelligent Information Systems, 2000, 1-13.
[34] L. Breiman,2001. Random forests, Machine Learning, vol. 45, 5–32.
[35] D.L. Fisher, 1966. Data, Documentation and Decision Tables. Comm ACM Vol. 9
No. 1 (Jan. 1966), 26–31.
[36] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques
Information Gain, ser. The Morgan Kaufmann Series in Data Management Systems.
Morgan Kaufmann.
[37] M. Hall, E. Frank, G. Holmes, B. P. Fahringer, P. Reutemann, and I. H. Witten,
2009. The weka data mining software: An update, SIGKDD Explorations, 11, 130–133.
[38] W. W. Cohen, 1995. Fast effective rule induction. In Proceedings of the 12th
International Conference on Machine Learning, 115-123.Morgan Kaufmann.
[39] D. Martens, B. Baesens, T.V. Gestel and J. Vanthienen, 2007. Comprehensible
credit scoring models using rule extraction from support vector machines. European
Journal of Operational Research, 183 (2007), 1466–1476.
[40] Rcpp: Seamless R and C++ Integration: Version 0.12.9, 2017, https://cran.r-
project.org/web/packages/Rcpp/index.html.
[41] R. J. Urbanowicz and J. H.Moore, 2009, Learning Classifier Systems: A Complete
Introduction, Review, and Roadmap, Journal of Artificial Evolution and Applications,
(Jan 2009), 1-25.
[42] A. González, R. Perez, 2001. Selection of relevant features in a fuzzy genetic
learning algorithm, IEEE Transactions on Systems and Man and Cybernetics
and Part B: Cybernetics 31 (2001) 417–425.
[43] J.S. Aguilar-Ruiz, R. Giraldez, and J.C. Riquelme, 2007. Natural encoding for
evolutionary supervised learning, IEEE Transactions on Evolutionary Computation, 11
(2007) 466–479.
[44] W.J. Choi, and T.S. Choi, 2012. Genetic programming-based feature transform
and classification for the automatic detection of pulmonary nodules on computed
tomography images, Information Sciences 212 (2012) 57–78.
[45] P. Espejo, S. Ventura, and F. Herrera, 2010. A survey on the application of genetic
programming to classification, IEEE Transactions on Systems, Man, and
Cybernetics, Part C 40 (2010) 121–144.
[46] A. Zafra, and S. Ventura, 2010. G3P-MI: a genetic programming algorithm for
multiple instance learning, Information Sciences 180 (2010) 4496–4513.
[47] F. Zhu and S. U. Guan, 2004, Ordered incremental training with genetic
algorithms, Int. J. Intell. Syst., 19, 12, (2004) 1239–1256.
 [48] S. U. Guan and F. Zhu, 2005, An incremental approach to genetic algorithms-
based classification, IEEE Trans. Syst., Man, Cybern. B, Cybern., 35, 2, (Apr. 2005) 227–
239.
[49] D. Du, D. Simon and M. Ergezer, 2009, Biogeography-based optimization
combined with evolutionary strategy and immigration refusal, IEEE International
Conference on Systems, Man and Cybernetics, San Antonio, TX, 2009, pp. 997-1002.
[50] S. B. Mehta, S. Chaudhury, A. Bhattacharyya, nad A. Jena, 2011, Tissue
Classification in Magnetic Resonance Images Through the Hybrid Approach of
Michigan and Pittsburg Genetic Algorithm, Appl. Soft Comput., 11, 4, (June, 2011),
3476-3484.
[51] H. Ishibuchi, T. Nakashima, and T. Murata, 2001, Three-objective genetics-based
machine learning for linguistic rule extraction, Information Sciences, 136, 1–4,
(August 2001), 109-133.
[52] C. C. A. Coello, and G. B. Lamont, 2004, Applications of multi-objective
evolutionary algorithms. Vol. 1. World Scientific.

http://www.ics.uci.edu/mlearn/MLRepository.html
http://ico2s.org/software/gassist.html
http://embeddedlab.csuohio.edu/BBO/IWO.html

