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Abstract—We present our design and implementation of Stand-
off, an innovative benchmark suite of computational theory of
mind tasks, based on the competitive feeding paradigm from com-
parative psychology. We find that a small convolutional LSTM
model without explicit theory of mind mechanisms can reach
high levels of accuracy when exposed to the full variety of our
task design during training. Such a model faces generalization
challenges when exposed to narrower subsets of tasks. Finally,
we discuss how this test may be used as a gateway for studying
theory of mind skills beyond attribution of seeing and knowing.

I. INTRODUCTION

Imagine you are a juvenile chimpanzee, in a deep local
minimum within the social hierarchy of your tribe. A delicious
fig falls to the ground in full view of your boss, but then it
keeps rolling while out of his view. You have no chance in
a head-to-head fig battle, but you know that he thinks the
fig is somewhere other than where it really is, which means
you can make a dash for it! This scenario presents a canonical
example of theory of mind (ToM) reasoning—reasoning about
the beliefs, desires, goals, and other invisible mental states of
social agents in one’s environment.

How do intelligent agents acquire ToM capabilities? In
addition to rich webs of evolutionary, environmental, and
sociocultural circumstances [1], agents must also learn from
their experiences and, importantly, be able to generalize their
knowledge appropriately to new situations. For example, the
young chimpanzee ought to have learned, at some point, about
lines of sight. However, our young chimp need not have seen
all possible lines of sight, nor all possible permutations of
events. More likely, some basic principles are learned that can
then transfer to a wide variety of scenarios as needed.

Studying ToM, especially in non-human animals, is no-
toriously difficult because it is hard to discern whether an
individual takes actions for ToM-related reasons or for other,
non-ToM reasons [2]. Did you go for the fig because you knew
what your boss didn’t know? Or was it because you knew that
it is okay if you cannot see his eyes? It is to solve this thorny
problem of interpretation that comparative psychologists have
designed elaborate, multi-stage ToM experiments. Using these
setups, an individual animal’s ToM capabilities can be deduced
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Fig. 1. Six steps from a challenging Standoff task. (1) The learning agent
(yellow triangle) competes with an opponent (red triangle) for treats (green
circles) hidden in boxes (orange squares), with the opponent having priority if
they both choose the same one. (2) A large treat is placed in a box while the
opponent’s vision is obscured. (3) With the opponent’s vision then unobscured,
a small treat is placed in a different box. (4) Finally, the opponent’s vision is
obscured again while the two treats swap locations. (5) Once both agents are
released (with red ‘curtains’ shielding their movements from each other), the
learning agent should choose the smaller treat, because (6) it should know
that the opponent will choose the true location of the larger treat, under a
doubly false belief that that is where the smaller, only treat is.

not necessarily from their performance on a single task, but
from their performance across a structured set of tasks.

Computational cognitive modeling allows researchers to
empirically analyze hypotheses about how ToM is represented,
relying on controlled and varied tests for comparison. Many
current computational ToM tests do not capture the variety
of interactions needed to differentiate candidate explanations
about embodied agents’ reasoning in response to the chang-
ing beliefs of others. This lack of comprehensive testing
scenarios makes it challenging for researchers to investigate
how machine learning models may learn and apply ToM
representations to unfamiliar interactions. In this paper, we:

1) Present our design of a benchmark suite of computational
ToM tasks, based on the competitive feeding paradigm
from comparative psychology (Sections III and IV).

2) Demonstrate that a convolutional LSTM model excels
when fit to all regimes in our benchmark, but struggles
to generalize when trained on subsets of the dataset
(Sections V, VI, and VII).



3) Discuss how competitive feeding may be used for study-
ing ToM skills, both at a finer-grained level and beyond
attribution of seeing and knowing (Section VIII).

II. RELATED WORK

A previous review focusing on the design of many different
tests for ToM skills developed by comparative and develop-
mental psychologists [3] justifies the use of a test paradigm
called competitive feeding as a benchmark for studying the
ToM skills of embodied computational agents. Competitive
feeding is described in detail in Section III of this paper.

Our research is closely related to work that benchmarks
the abilities of computational models that learn to predict the
motivation and mental states of other agents from experience.
Recently, two extensive benchmark tests, the Baby Intuitions
Benchmark (BIB) [4] and AGENT [5] have been proposed to
test the extent to which machines can reason about the inten-
tions that drive agent actions. BIB is based on the Violation of
Expectation (VOE) paradigm and contains several tasks, each
of which has a familiarization phase and a test phase. During
the familiarization phase, multiple trial videos show an agent
performing some task, such as moving to a goal object. In the
test phase, the model watches another video and determines
whether the expected action of the agent is violated. BIB inves-
tigates whether AI agents can learn representations related to
object preference and instrumentality of actions toward higher-
order goals. The AGENT environment contains similar trials
and a more diverse range of physical situations, such as ramps
and bridges. The AGENT environment’s evaluation protocol
tests whether models can generalize from different kinds of
learning trials, i.e. learn to perform well when the test trials
belong to a different distribution than the training trials.

Several works explore the design of computational agents
that can model the mental states and intentions of other agents.
[6] developed the ToMNet architecture to model agents’ inten-
tions in order to predict their future actions. Its effectiveness
is limited to cases where the test distribution is similar to the
training distribution. More recently, [7] built reinforcement
learning models whose policies are conditioned on beliefs
about other agents. This kind of formulation leads to models
that perform better than models without this conditioning.
However, trained models perform much worse compared to
when ground-truth beliefs are available to the learners, demon-
strating a gap in modeling the beliefs of other agents.

Despite recent progress in building agents that demonstrate
ToM, the nature of learning and representational mechanisms
that lead to robust ToM skills remains an open problem.
While the ToMNet architecture [6] demonstrates that it is
possible to model agents’ beliefs using specialized archi-
tecture, these architectural changes are insufficient for the
model to generalize in cases where the test data is sampled
from a different distribution [4], [5]. In contrast, [5] shows
that a model that combines Bayesian Inverse Planning with
strong built-in representations of object physics is able to
effectively generalize to different evaluation settings in the
AGENT benchmark.

ToM has been tested in other domains as well. For example,
there are several tests for ToM in the natural language pro-
cessing literature [8], [9]. With the recent surge of research
surrounding large language models, there has also been a
body of work that investigates whether large language models
demonstrate theory of mind. Some research suggests that the
ToM abilities of these models are sensitive to trivial alterations
[10], indicating that learning robust theory of mind skills
remains an open question for different ML domains.

III. OUR SOLUTION: A COMPUTATIONAL BENCHMARK

Our work is heavily inspired by the competitive feeding
paradigm, an expressive task format in comparative psychol-
ogy developed by Hare et al. [11] and substantially expanded
and refined by Penn and Povinelli [12]. Competitive feeding
focuses on nonverbal ToM skills related to perceiving and
reasoning about an opponent’s lines of sight, correct and
incorrect beliefs about the world, and how the dynamics of
these factors over a sequence of events.

To evaluate a variety of ToM skills in computational agents,
we introduce Standoff, a novel computational benchmark.
Standoff serves as a gridworld environment designed to gauge
the extent to which models generalize abilities across a range
of competitive feeding-inspired scenarios.1 Standoff is built
on minigrid [13] using Supersuit [14] and PettingZoo [15] for
both supervised and reinforcement learning use. In this paper
we evaluate only supervised learning models.

A. Competitive-feeding-inspired tasks
In Standoff tasks, the player’s goal is to navigate an environ-

ment to reach a box containing the largest treat possible. Two
differently sized treats are always available, and sometimes
an opponent with the same goal is present. Treats are placed
one-by-one, and then they might be shuffled around in specific
patterns. Treats are briefly visible while placed or shuffled,
but are otherwise hidden within one of five boxes. The
opponent’s vision is sometimes obscured by an opaque wall,
causing it to be unaware of a placement or reshuffling. The
challenge presented to the player is differentiating between
the opponent’s possible belief states in order to select which
treat to approach: Is the opponent unaware of the big treat’s
location, or is the smaller treat the most desirable option?

In this setting, the opponent may harbor two kinds of
unawareness: if the opponent never witnesses a treat of a
given size being placed or swapped, it will be uninformed,
or oblivious to the existence of such a treat. If the opponent
witnesses a treat being placed or swapped, but then that treat
is swapped again while the opponent’s vision is obscured, then
the opponent is misinformed, unaware of the treat’s location.
Note the difference in kind between these two sources of
unawareness: while the former is a lack of knowledge, the
latter involves a specific counterfactual belief, since the treat
was previously observed at some location.

1Standoff can be accessed at https://github.com/aivaslab/standoff. Supple-
mentary information about the hyperparameter tuning and training of our mod-
els can be found at: https://github.com/aivaslab/standoff/blob/main/icdl2024-
standoff-appendix.md



attribute group range condition description
visible placements

main attributes
0-2 the number of visible placements

swaps 0-2 the number of swaps
visible swaps 0-swaps the number of visible swaps
fsb

special cases
boolean swaps > 0 first swap is btw. both treats

dsp boolean swaps > 0 & !fsb delay 2nd placement after 1st swap
ssf boolean swaps == 2 & !dsp 2nd swap is to 1st swap location
first placement size

ordering attributes

boolean which treat is placed first
first swap index boolean swaps > 0 & !fsb & !dsp which treat is swapped first
uninf. placement boolean visible placements == 1 which placement is obscured
uninf. swap boolean swaps == 2 & visible swaps == 1 which swap is obscured

TABLE I
THE TEN ATTRIBUTES USED TO GENERATE STANDOFF TASKS. COMBINING

THESE PRODUCES 296 UNIQUE EVENT ORDERINGS.

B. Measuring Generalization

Penn and Povinelli design competitive feeding as a curric-
ular transfer learning task with three stages [12]. First, the
subject is exposed to the idea that they may navigate to and
select a treat from the two that are placed. In the second stage,
a dominant opponent is introduced. This opponent always
navigates to the larger treat, so the subject learns to maximize
its reward by approaching the smaller treat. Once the subject
has demonstrated success on the first two stages, it is evaluated
on the third stage, which is split into eight or more tasks.

Stage-3 tasks are designed to control for superficial rules
which might inform behavior. They specifically contrast sce-
narios, such as when the opponent has a counterfactual belief
versus a true belief. In addition to varying visible placements
and swaps, special cases allow for rich behavior comparison.

The validity of the test lies in the unlikelihood of solving all
stage-3 tasks without 1) prior experience, and 2) some model
of opponent beliefs. The opponent’s behavior is determined
by its belief state which, in turn, is shaped by numerous
observable environment features, leading to a combinatorially
explosive set of possibilities. Due to the set’s variety, a
high accuracy is incredibly unlikely unless the subject uses
reasoning that generalizes well across opponent belief states.

C. The gridworld environment dynamics

Standoff tasks exist in an eight-by-eight gridworld setting.
The player character is represented by an agent object which
may be controlled by a computed policy or by a human
player. The opponent character’s behavior dynamically adjusts
to different scenarios to navigate to the best treat reward that
it has seen. Player observations are seven-by-seven birds’-eye
views of the agent’s surroundings, many-channel arrays that
describe the properties of surrounding tiles: opacity, solidity,
visibility, opponent presence, and the presence of either treat.
Opaque tiles are used to block opponent vision as well as the
player’s vision of the opponent.

The player and opponent agents begin on opposing sides of
the grid, facing inward. Between them lie five boxes. For sev-
eral timesteps, both players are stationary while they observe a
series of events: Two treats of different value are placed one-
by-one in the boxes. Swaps might occur, during which the
contents of two boxes discontinuously swap locations. The
order of events varies. During each event, the contents of the
relevant boxes are briefly visible. The opponent’s vision of
the boxes might be temporarily obscured by a wall, which

is visible to the player. After these events take place, both
characters are released. The boxes are positioned closer to the
opponent than the player, indicating that the opponent will
win, should the two compete for one box.

For supervised learning, the five box locations correspond
to a five-category classification problem. The inputs are five-
timestep sequences of seven-by-seven multi-channel observa-
tions of a stationary player, up until the moment of release. The
correct output is the box containing the highest-value available
(not being targeted by the opponent) treat.

IV. METHODS

A. Dataset generation

Rather than using a minimal number of test scenarios like
real life competitive feeding trials, we enumerate a broad range
of possibilities under the test’s logic. Penn and Povinelli’s tasks
have counterparts which function as controls. E.g. the removed
uninformed task can be directly compared with removed
informed to see the effect of the opponent’s informedness.
We expect generalizing to a broader set of novel scenarios
to be increasingly difficult, at least without explicit belief
representation.

1) Events: Each task is a unique sequence of events, of
four types: placements have new treats being placed in the
environment. The treat is visible for 1 timestep before being
hidden in a box. A treat is always placed in a random empty
box, except for the delay second placement (dsp) condition,
during which the second treat is placed in the previous
treat’s former location. There are always 2 placement events,
guaranteeing a treat for the player. During a swap event, a
box containing a treat is emptied and that treat is shown in
a new location before it is hidden in a box. Normally, an
empty location is selected, except for first swap both (fsb)
condition, which swaps the two treats, and second swap to
first (ssf ) condition, which places the second swapped treat in
the newly emptied box provided by the first swap. The other
two events instantly obscure or reveal the room’s contents to
the opponent via placing or removing opaque tiles.

2) Parameters: The 3 major parameters, visible placements,
swaps, and visible swaps form 18 sets of tasks. By adding the
three special case boolean parameters, fsb, dsp, and ssf, we
have 66 unique tasks. By adding up to four event parameters
(first treat size, first swap index, visible placement, visible
swap), we are left with 296 unique event orderings. Finally,
each task may or may not have an opponent present.

3) Permutations: Since these event orderings require differ-
ent amounts of timesteps before the release event, we lengthen
the placement and swap events such that all sequences are
equal length, five timesteps. Accounting for all valid (totalling
five) event lengths, we are left with 880 lengthened event
orderings. Finally, we must account for the varied locations
at which treats are placed during placement and swap events;
this combination leaves us with 47,040 unique trials, which
we shall use as our datapoints.



Tt Tf Tn Ft Ff Fn Nt Nf Nn
full-absent a a a a a a a a a
full-present p p p p p p p p p
full-both a+p a+p a+p a+p a+p a+p a+p a+p a+p
single-Tt-a a - - - - - - - -
single-Tt-p p - - - - - - - -
single-Tf-a - a - - - - - - -
single-Tf-p - p - - - - - - -
... ... ... ... ... ... ... ... ... ...
contrast-Tt a+p a a a a a a a a
contrast-Tf a a+p a a a a a a a
... ... ... ... ... ... ... ... ... ...
homogeneous a+p - - - a+p - - - a+p

TABLE II
THE SPECIFIC INFORMEDNESS REGIMES THAT COMPRISE EACH OF THE
DATASETS USED IN THIS PAPER. EACH ROW REPRESENTS ONE DATASET

AND EACH COLUMN REPRESENTS ONE INFORMEDNESS REGIME. A
CHARACTER IN A CELL INDICATES REGIME INCLUSION WITH AN ABSENT
OPPONENT (A), A PRESENT OPPONENT (P), OR BOTH THOSE CASES (A+P).

B. Informedness regimes

Competitive feeding assumes that animal subjects possess
certain core knowledge priors, including object permanence,
navigation skills, social hierarchy, preference for larger treats,
and gaze comprehension. While stages 1 and 2 expose the
subject to the task setup, they are not intended to teach these
priors; instead they verify that the priors are used correctly.

To expose our players to all necessary priors during training
without also letting them memorize situational strategies, we
categorize our tasks by opponent presence and informedness.
Our opponents may be informed about either of two treats,
so we label these individually: an uppercase letter indicates
informedness about the larger treat (T for true belief, F for
false belief, or N for no belief), lowercase for the smaller (t,
f, or n), and one character indicates the opponent’s absence
or presence (a or p). We classify tasks with absent opponents
by a hypothetical informedness state, as though an opponent
were present, to for ease of comparison. This classification
ultimately produces 18 regimes, each labeled by a unique
string, e.g. “Tf-p” refers to all tasks in which a present
opponent is aware of the large treat’s location but harbors a
counterfactual belief about the small treat’s location.

C. Our learning target: optimal treat selections

If no opponent is present, the optimal policy is to select
the larger treat. Otherwise, the correct selection depends on
the opponent’s beliefs about treat locations. If the opponent is
correctly informed about the larger treat’s location, the player
should go for the smaller treat. Otherwise, the optimal policy
depends on the opponent’s beliefs. Sometimes, the opponent
arrives at a counterfactual belief about one treat location
coinciding with the true location of the other. In such an event,
the player’s optimal choice could be the smaller treat even if
the opponent is unaware of the large treat’s location. If an
opponent is fully uninformed about both treats, we define its
policy to be selecting the closest box. This choice ensures that
the opponent’s policy is universally predictable to an observer.

Due to special cases like these, most informedness regimes do
not have a single optimal treat size.

V. EXPERIMENT 1: FULL-SCOPE TRAINING

Before evaluating generalization from limited sets of tasks,
we will first establish that our selected model, a convolutional
LSTM architecture without any explicit ToM-oriented archi-
tectures or training, is capable of succeeding at the overall
challenge presented by Standoff. In this experiment, we train
models on three datasets, containing all tasks with an opponent
absent (full-absent), an opponent present (full-present), and
the union of those two conditions (full-both). Full-absent
will serve as a baseline for comparison with future models:
this dataset exposes a model to all relevant elements of the
environment except for the opponent. The next dataset, full-
present, imitates stage 3 of competitive feeding by containing
the full variety of scenarios with an opponent present. Models
fit to this dataset may find success by memorizing situational
rules as opposed to generalizing strategies. The third dataset,
full-both, includes all trials from both the previous two. As
with full-present, we have no reason to expect models trained
on full-both to learn generalizing rules, but the dataset is useful
for ensuring that models do not underfit.

A. Methods

We train our convolutional LSTM models with supervised
learning. The specific architecture and hyperparameter tuning
process are detailed in the online supplementary material.
All reported data on model results in this paper use mean
results from three models, separately trained with random
initializations and batches for 5000 batches of 256 datapoints
each. We train for a constant number of batches so as to ensure
fair comparisons between datasets of different sizes, though
we do not find a strong connection between dataset size and
accuracy in single-regime training sessions.

B. Metrics

1) Accuracy: The key metric for performance is accuracy,
i.e. whether the rational option that accounts for the presence
of a dominant opponent’s beliefs is selected. To delve deeper
into a model’s capabilities, we may slice accuracy by factors
like the opponent informedness, fsb, ssf, or dsb.

C. Results

All models consistently reach high accuracies (≥97%) on
their own training regimes, with low inter-model standard
deviations (≤2%). When any opponent-present ( -p) and
opponent-absent ( -a) models are tested on novel regimes, they
score well when the optimal policies of those regimes match
their absent/present counterparts, and poorly otherwise.

We also examine the qualitative effect of individual tasks
and task parameters. The full-present models perform best
overall on tasks with zero visible swaps, and poorly with
two visible swaps. Tasks with zero visible swaps include
those with zero total swaps, so it is unsurprising that the
full-absent models follow a similar pattern, assuming swaps



Fig. 2. Mean accuracy results of convolutional LSTM models trained on
each of our datasets (rows) and tested on the nine informedness regimes with
an opponent present (columns). Each reported value is the mean accuracy of
three models trained with different random initializations and minibatches.
The top three rows display the results of Experiment 1, the next eighteen
display Experiment 2, and the next ten display Experiment 3.

are universal sources of confusion. Models trained on full-
both, whose highest-scoring tasks are those with zero swaps,
score highly on tasks with the dsp special case, in which the
second placement takes place after the first swap. Nine of
the ten poorest-scoring individual tasks of models trained on
full-absent include the special case fsb, where the first swap
is between both treats. That pattern is repeated for both the
full-present and full-both models, although their weakest tasks
simultaneously include ssf ; tasks with both fsb and ssf have
the two treats swap locations with each other twice, returning
to their initial positions.

VI. EXPERIMENT 2: SINGLE-REGIME TRAINING

Next, we examine how models tend to generalize when
trained on narrow subsets of the dataset. In particular, we are

interested in the extent to which models’ performance transfers
from any one informedness regime to the next.

A. Methods

We train models on each of our eighteen informedness
regimes individually. In addition to the performance metrics
established in Experiment 1, we note that transfer across
different informedness regimes could be asymmetric. The
asymmetric transfer between two regimes is calculated by
measuring the difference in mean accuracy when training on
one and testing on the other, and vice versa.

B. Results

All models converge to high accuracies on the regimes on
which they were trained. Surprisingly, most models trained
with an absent opponent do not perform well on other regimes
with an absent opponent. Across all evaluation regimes, mean
inter-model standard deviation of is 2.65%, and the standard
deviation of inter-model standard deviations is 4.00%. The
models trained on single-Tt-p display an outlying standard
deviation on the Tf-p test regime at 24%.

Chimpanzees given the similar competitive feeding test [16]
produce results indicating that they are able to distinguish
between informed, uninformed, and misinformed opponents,
but only regarding one treat. When an opponent is informed
about one treat but uninformed or misinformed about the other,
the subjects become unable to distinguish informedness states.

If our own models were to follow a similar pattern, we
might observe differences in their ability to transfer knowl-
edge across regimes of different informedness homogeneity,
meaning whether the opponent’s informedness states about the
two treats are the same or different. Specifically, we posit that
models trained on heterogeneous regimes (Tf, Tn, Ft, Fn, Nt,
Nf) exhibit superior performance when evaluated on homo-
geneous regimes (Tt, Ff, Nn), compared to the reverse. We
do not find such a pattern in our models’ performance. When
transferring from homogeneous to heterogeneous regimes with
an opponent present, our models are overall more accurate by
a mean of 10.2% over all inter-homogeneity regime pairs, with
considerable variation (standard deviation 21.3%).

The most notable asymmetric transfer of individual regime
pairs emerges from the Nf-a regime, which exhibits a distinct
pattern of strong performance when models trained under it are
transferred to other regimes, particularly Ft-a, Fn-a, Ft-p, and
Fn-p. This regime has 1740 unique trials, which is lower than
the mean of 2613, but its tasks tend to have more swaps than
average. Nf-p has an identical set of swaps, so it is unclear
why its transfer to other regimes differs so markedly.

VII. EXPERIMENT 3: MIXED-REGIME TRAINING

Our ultimate goal is to train models which display general-
ization on tasks with opponents with various mental states,
so we must minimize the amount of exposure our models
have to those tasks. For a tabula rasa player to understand
the competitive feeding format, however, it must be exposed
to trials with an opponent present. In this experiment, we



examine the effect of exposure to mixtures of regimes with
present and absent opponents.

A. Methods

In this experiment, we use nine contrastive datasets. These
datasets each include all tasks with an opponent absent, plus
tasks from exactly one of the nine informedness regimes with
an opponent present. Each contrastive dataset is labeled by
the opponent-bearing informedness regime it contains; e.g.
the contrastive dataset containing all of full-absent plus Tt-
p is labeled contrast-Tt. Since the full-absent regimes are
similar to stage 1 of competitive feeding, and stage 2 features
a fully informed opponent, contrast-Tt is analogous to the
competitive feeding exposure phase. Additionally, because
such datasets include examples of only one type of opponent
informedness, we introduce the homogeneous dataset, which
includes all homogeneous regimes, with an opponent both
present and absent. This dataset allows us to more directly
test for generalization across informedness homogeneity.

B. Results

Similar to the results from Experiment 2, models trained on
each contrastive dataset—and homogeneous—perform well on
regimes included in their training. Accuracy generally follows
the pattern of near perfection across regimes with similar
optimal treat sizes, and is low otherwise. Models trained on
the Tt regime, which we point out for its similarity to stages
1 and 2 of standard competitive feeding, do not generalize
well to any regimes featuring opponents with uninformed or
misinformed belief states. The Nf regime is a notable outlier,
as all models trained on other regimes struggle to generalize
effectively to it. In this regime, the opponent selects a box
which does not contain the smaller treat, but might contain
the larger by accident. The opponent harbors similar beliefs
in the Fn regime, but in those trials that fact is irrelevant to the
player’s optimal strategy: to always select the larger treat. The
amount of accidentally-best selections in Nf totals 34.5% of
all datapoints, compared to 20% or less for all other regimes.

VIII. DISCUSSION AND FUTURE WORK

Our convolutional LSTM model’s inability to generalize
suggests that it tends to learn shallow mechanical patterns
rather than how to make or use accurate inferences. The
asymmetry in transfer between different regimes indicates the
potential for building and leveraging training curricula. Finally,
these baseline experiments present us with a set of especially
challenging test conditions to highlight for rapid evaluation of
ToM skills, where we find that the most difficult tests involve
reasoning about uncertain mental states.

In future experiments, the variety provided by the competi-
tive feeding test will allow for a much more fine grained explo-
ration of models’ capabilities. One benefit of studying machine
learning models, as explored by [6], is the ability to directly
probe their internal activations for representations of beliefs.
Additionally, we might consider a metric which quantifies
internal activation or external policy changes of a model with

respect to changes in opponent belief states.Varying certain en-
vironment parameters allows for expression of a wider range of
ToM and ToM-related skills [3]. In this paper, we examined an
agent’s ability to reason about another agent’s beliefs only as
they pertained to its goal-oriented behavior. While competitive
feeding tests for attribution of gaze and beliefs, modifications
might include shared rewards, different preferences, or sources
of environmental and social uncertainty. By reversing the roles
of player and opponent, we could test for models’ ability to
extrapolate knowledge from first- to third-person experiences.
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