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Abstract—Scientific software is defined as software that is used
to analyze data to investigate unanswered research questions in
the scientific community. Developers use programming languages
such as Julia to build scientific software. When programming
with Julia, developers experience program execution time dis-
crepancy i.e. not obtaining desired program execution time, which
hinders them to efficiently complete their tasks. The goal of
this paper is to help developers in achieving desired program
execution time for Julia by identifying the causes of why program
execution time discrepancies happen with an empirical study of
Stack Overflow posts. We conduct an empirical study with 263
Julia-related posts collected from Stack Overflow, and apply
qualitative analysis on the collected 263 posts. We identify 9
categories of program execution time discrepancies for Julia,
which include discrepancies related to data structures usage
such as, arrays and dictionaries. We also identify 10 causes that
explain why the program execution time discrepancies happen.
For example, we identify program execution time discrepancy to
happen when developers unnecessarily allocate memory by using
array comprehension.

Index Terms—Julia, programming language, stack overflow

I. INTRODUCTION

Scientific software is defined as software that is used to
explore and analyze data to investigate unanswered research
questions in the scientific community [1]. The domain of
scientific software includes software needed to construct a
research pipeline such as software for simulation and data
analysis, large-scale dataset management, communication in-
frastructure, and mathematical libraries [2] [3]. Programming
languages such as Julia [4] are used to develop scientific
software efficiently and achieve desired program execution
time. Julia was used in Celeste 1, a software used in astronomy
research. Celeste was used to load 178 terabytes of astronom-
ical image data to produce a catalog of 188 million astronom-
ical objects in 14.6 minutes, yielding a program execution
time improvement by a factor of 1,000, compared to prior
implementation 2. The Celeste-related example provides an
anecdotal evidence on how Julia could be beneficial to achieve
desired program execution time, and complete computations
tasks efficiently.

However, not all developers obtain the perceived benefits of
Julia with respect to program execution time. On online forums

1https://www.hpcwire.com/off-the-wire/julia-joins-petaflop-club/
2https://juliacomputing.com/case-studies/celeste.html

developers have reported program execution time discrepan-
cies i.e., not achieving desired program execution time for a
program written in Julia. For example, one developer reported
to be “giving up on Julia” because the developer observed
“a trivial hello world program” to respectively, run 27 times
and 187 times slower in Julia compared to that of Python
and C 3. The above-mentioned anecdotal evidence suggests
discrepancy in program execution time for developers who
use Julia, which may hinder developers in completing their
tasks efficiently. The Carnegie Mellon Software Engineering
Institute identified discrepancies in program execution time as
a risk for scientific software development, which should be
mitigated by the stakeholders [5].

Systematically investigating the discrepancies in program
execution time for Julia could derive clues to help developers
in achieving expected program execution time for software
programs written in Julia. Let us consider Figure 1 in this
regard. In Figure 1, we present an excerpt from a Stack
Overflow (SO) post 4, where a SO user reports a Julia program
to run 44 times slower than Fortran (Figure 1a). According
to Figure 1b, two causes are identified: (i) global variables;
and (ii) array slicing [4]. Evidence from Figure 1 suggests
by analyzing SO posts we can identify what Julia-related
program execution time discrepancies developers face, and the
corresponding causes.

The goal of this paper is to help developers in achieving
desired program execution time for Julia by identifying the
causes of why program execution time discrepancies happen
with an empirical study of Stack Overflow posts.

We answer the following research questions (RQs):
• RQ1: What categories of program execution time dis-

crepancies for Julia are reported by developers in Stack
Overflow posts? How frequently do identified categories
of program execution time discrepancies appear?

• RQ2: What causes explain program execution time dis-
crepancy for Julia?

We collect 263 Julia-related posts from Stack Overflow (SO)
to conduct our empirical study. We apply a qualitative analysis
technique called descriptive coding [6] to determine (i) the
categories of program execution time discrepancies, and (ii)

3http://www.zverovich.net/2016/05/13/giving-up-on-julia.html
4https://stackoverflow.com/questions/20613817/
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Fig. 1: Example SO Post Related to Program Execution
Time Discrepancy. Figures 1a and 1b respectively, identifies a
discrepancy in program execution time, and the corresponding
cause.

the causes that explain program execution time discrepancies
that occur in Julia programs.

We list our contributions as following:
• A list of categories for Julia-related program execution

time discrepancies;
• A list of causes that explain program execution time

discrepancy for Julia programs; and
• An analysis of how frequently the identified categories

and causes appear in SO.
We organize the rest of the paper as following: we describe

the methodology of the paper in Section II. We describe our
findings in Section III. We discuss our findings in Section IV
and related prior research in Section V. We conclude the paper
in Section VI.

II. METHODOLOGY

In SO, users can post questions that describe a specific
problem that they want to seek advice on [7]. Each question
has a title that provides a concise summary of what the
question is about [7]. The details of the question is presented in
the body, where users can describe the problem in detail with
additional references [7]. Each question has one or many tags,
which is used to identify the applicable language or technology
for the question.

We use the SOTorrent dataset [8] to collect Julia-related
posts. First, we identify SO questions with the tag ‘julia-lang’
to extract Julia related SO questions. According to prior
work [9] [10], SO datasets suffer from quality issues. Similar
to prior research [10], we apply a filtering criteria to improve
quality of the downloaded data, which is summarized in
Table I. We investigated our analysis of two RQs based on
these 263 posts.

RQ1: What categories of program execution time discrep-
ancies for Julia are reported by developers in Stack Overflow

TABLE I: Selection of Julia-related Stack Overflow Posts for
Analysis

Initial post count 41,782,536

Criteria-1 (Ques. with at least one answer ) 14,207,037
Criteria-2 (Ques. with score > 0) 6,902,332
Criteria-3 (Ques. tagged as ‘julia-lang’) 3,150
Criteria-4 (Ques. with ‘performance’ and ‘optimization’) 533
Criteria-5 (Ques. filtered manual inspection) 263

Final question count 263

posts? How frequently do identified categories of program
execution time discrepancies appear?

To answer the first part of RQ1, we analyzed the question
that describe a specific query related to program execution
time for Julia implementation. From the textual content of
the questions, we apply qualitative analysis technique called
descriptive coding [6]. First, we read the question description
and title to obtain raw text, which are merged into codes. Next,
we merged the codes based on similarities to derive categories.

In our analysis, one SO post can belong to multiple cat-
egories. The first author derived the categories, which is
susceptible to bias. We mitigate the first author’s bias by
sending a random sample of 25 posts to the third author
for reviewing. We calculate F1-measure for agreement rating
between the first and third author similar to Chen et al. [11].
In our analysis one SO post can belong to multiple categories,
and common techniques such as Cohen’s Kappa are not well-
suited. F1-measure reports harmonic mean to represent how
close two label sets are assigned to one SO post by two raters
[12]. A zero score indicates complete different and an one
represents complete identical rating. The recorded F1-score to
determine categories was 0.6.

To answer the second part of RQ1, we report the
normalized frequency of questions (Q(x)), answer to question
ratio (AQ(x)), and normalized view count (VQ(x)). We use
these three metrics as these three metrics have been used to
determine frequency analysis of SO posts [13] [14].

RQ2: What causes explain program execution time dis-
crepancy for Julia?

To identify the causes for program execution time dis-
crepancy, we applied descriptive coding similar to RQ1 on
comments and answers providing solution. Similar to our RQ1
analysis, a post may have multiple causes for discrepancies
related to program execution time. The first author listed
10 causes by applying descriptive coding on 263 posts. To
mitigate bias introduced by the first author, the third author
applied qualitative analysis on a set of 25 posts, and identify
mapping between the 25 posts and identified reasons. The F1-
score between the first and third author was 0.6.

III. EMPIRICAL FINDINGS

In this section we present our findings.

A. Answer to RQ1
What categories of program execution time discrepancies

for Julia are reported by developers in Stack Overflow



posts?: We identify nine categories of program execution time
discrepancies for Julia. The number of SO posts for each
category is shown in parenthesis in Table II. Each post can
belong to multiple categories. We describe each category with
explanations and example SO posts. Throughout the rest of
this paper, references to example SO posts are presented in
the format of ‘( POSTID)’.

1) Data Structure: This discrepancy is related to pro-
gram execution time discrepancies that happens for Julia data
structures usage. The design, analysis, and implementation
of data structures determine program execution time [15].
With respect to frequency, this category is the largest. Users
asked questions about array, vector, dictionary, and dataframe
manipulation. In an example post a developer asks faster
summation over an array ( 36801197).

2) Mathematics/Statistics/Machine Learning: This discrep-
ancy is related to mismatches in program execution time for
mathematical calculations, which is prevalent amongst nu-
meric operations and machine learning tasks [4]. For example,
a developer sought solution for the fastest way to compute the
sum of outer products of an n-dimensional column vector (
38773076).

3) Language Transfer: This discrepancy happens when de-
velopers transfer to Julia from another programming language.
Transfer learning of programming language poses confusion
in adopting a new language [16] and developers do not
observe the expected speedup in Julia. An example SO post
expresses user’s dissatisfaction with Julia’s performance com-
paring with Matlab to compute eigenvectors of large matrices
( 40034479).

4) Function/Package/Compilation: This discrepancy is re-
lated to program execution time discrepancies that happens in
compile time for Julia. This category also includes compilation
time of Julia functions and packages. In an example post we
see question about eval function usage from a dictionary (
41639237).

5) Parallel Programming: This discrepancy is related to
program execution time discrepancies for software using Ju-
lia’s parallel programming features. Julia’s built-in primitives
for parallel computing [17] have been deployed for speeding
up computational tasks [18]. In an example post we notice
user wants to speed up gradient descent calculation by paral-
lelization ( 31656858).

6) Data Type Concern: This discrepancy is related to pro-
gram execution time discrepancies that occurs for Julia’s data
types. Data type declaration is related to memory allocation
and program’s execution time [19]. This category documents
posts with type concerns. A developer in an example post
asks about the efficient implementation of Julia template (
45972534).

7) Memory Allocation: This discrepancy is related to pro-
gram execution time discrepancies that occurs due to inef-
ficient allocation of memory for Julia programs. Programs’
execution time are determined by memory allocation by using
data structure and types [19]. In an example SO post, we

TABLE II: Categories of Program Execution Time Discrep-
ancies with Frequency Analysis. Q = Normalized Question
Frequency, AQ = Answer to Question Ratio, and VQ =
Normalized View Count.

Category Q AQ VQ
Data Structure Concern (103) 0.36 1.68 556.38
Mathematics/Statistics/Machine Learning (57) 0.20 1.48 384.43
Language Transfer (42) 0.15 1.86 1678.12
Function/Package/Compilation (36) 0.13 1.39 581.50
Parallel Programming (34) 0.12 1.41 580.09
Data Type Concern (21) 0.07 1.52 239.00
Memory Allocation (16) 0.06 1.69 237.56
File Operation (12) 0.04 1.25 454.67
Scope Concern (7) 0.02 1.57 288.71

observe user’s concern about huge memory allocation of the
program ( 38399478).

8) File Operation: This discrepancy is related to program
execution time discrepancies that occurs during reading and
writing datasets. As data storage and access are important for
scientific tasks, efficient file operation is required to avoid
program execution time discrepancies [20]. An example SO
post question discusses about efficient implementation of file
input to read a matrix ( 26810171).

9) Scope Concern: This discrepancy is related to the scope
of variables declared in Julia. Global variables slow down
Julia’s execution time [21]. Branches, loop, and control flow
shape a program’s execution time behavior [19]. An example
post of this category is ( 29877563).

How frequently do identified categories of program execu-
tion time discrepancies appear?: Table II lists the Q (x), AQ
(x), and VQ (x) for all developed categories. The Q (x) count
is related with the number of posts belonging to each category.
From Table II, we observe the highest view count for the
category ‘Language Transfer’, which suggests the prevalence
of this category of discrepancy amongst both registered and
non-registered SO users.

B. Answer to RQ2

In this section, we answer : What causes explain program
execution time discrepancy for Julia? We describe the causes
associated with program execution time discrepancy for Julia.
Each cause is presented below with examples from SO pre-
sented in the format of ‘( POSTID)’.

1) Inefficient Program Construct: This category is indica-
tive of syntax-related causes for program execution time
discrepancy. The post answer provides the syntax of right or
efficient implementation package and function. An example
post answer suggests the use of ‘readdlm’ [4] to read a file
efficiently, instead of using a loop to read the file character by
character ( 26810171).

2) Memory Management Knowledge Gap: This cause in-
cludes degradation of program execution time due to memory
allocation. The Julia documentation for performance recom-
mends users to avoid unwanted memory allocation [21]. This

https://stackoverflow.com/questions/36801197/summation-over-array-slower-than-summing-individual-variables-in-julia
https://stackoverflow.com/questions/38773076/what-is-the-fastest-way-to-compute-the-sum-of-outer-products-julia
https://stackoverflow.com/questions/38773076/what-is-the-fastest-way-to-compute-the-sum-of-outer-products-julia
https://stackoverflow.com/questions/40034479/julia-vs-matlab-benchmarking-eigenvector-calculations
https://stackoverflow.com/questions/41639237/best-way-to-eval-in-a-given-scope-context-which-is-in-the-form-of-a-dict
https://stackoverflow.com/questions/41639237/best-way-to-eval-in-a-given-scope-context-which-is-in-the-form-of-a-dict
https://stackoverflow.com/questions/31656858/parallelising-gradient-calculation-in-julia
https://stackoverflow.com/questions/45972534/templated-functions-for-julia
https://stackoverflow.com/questions/45972534/templated-functions-for-julia
https://stackoverflow.com/questions/38399478/huge-memory-allocation-running-a-julia-function
https://stackoverflow.com/questions/26810171/is-there-an-equivalent-or-close-to-numpy-loadtxt-for-julia
https://stackoverflow.com/questions/29877563/performance-of-for-loops-in-julia
https://stackoverflow.com/questions/26810171/is-there-an-equivalent-or-close-to-numpy-loadtxt-for-julia


can be done by using in place version of functions (i.e., in-
place version ‘sort!’ instead of ‘sort’), declaring variable
outside loop by manual inspection, avoiding array compre-
hension, array slicing, and unnecessary temporary variables.
An accepted answer suggests to rewrite code by allocating
array outside the loop for efficient dot product calculation
( 38687435).

3) Julia Concepts Knowledge Gap: This cause includes
understanding Julia-specific features such as, longer execution
time for first run in Julia due to just-in-time compilation
( 47501844), accessing arrays in column major order for
faster manipulation ( 29742768). The Julia documentation
page for performance tip lists these two features for correct
time comparison and performance enhancement [21].

4) Lack of Computer Science Fundamentals: Developers
experience discrepancies in program execution because they
don’t have necessary knowledge in algorithm-related concepts
such as time complexity. For example, a developer was un-
aware on the effects of using nested loops, which resulted in
O(n2) time complexity. Replacing the O(n2) implementation
with O(n) resulted in performance boost ( 31321810).

5) Global Scope: Developers experience program execu-
tion time discrepancies due to lacking knowledge of Julia’s
scope. Code constructs such as variables used in a global
scope can change at any point during program execution,
forcing the compiler to decide the types of the variables in
runtime, leading to slower program execution time in Julia
[21]. An example SO post answer suggests performance boost-
ing by avoiding declaring global variables and wrap up code
fragments in functions, avoiding extra memory allocation,
and writing explicit for loops instead of vectorization (
20613817).

6) Type Instability: One identified cause for program exe-
cution time discrepancy is type-instable code. Type-instablity
arises if the compiler needs to decide data type of variables
during runtime. The Julia documentation for performance tips
[21] lists to avoid type-instable practices such as abstract data
type, anonymous function, and mismatching of return type in
a function. In a SO post, one suggested solution is to declare
variables with appropriate types such as Double or Integer (
42043590).

7) Parallel Programming Knowledge Gap: This cause
lists poor program execution time due to lack of par-
allel computing concepts. Examples include: not using
parallel programming specific data structure such as,
SharedArray or DistributedArray ( 31656858),
starting more processes than cores ( 50975707), and not
using ‘@everywhere’ to pass data among worker threads
( 26168943).

8) Vectorization: The vectorization form in Julia requires
memory allocation. Vectorization involves of operations that
operate on whole arrays. For example, x+ = 0.5 ∗ (y + z) is
an example of vectorization, where x, y, and z are arrays. We
notice suggestion to explicitly use a for loop, instead of using
vectorization ( 20613817).

9) Macro Concept Gap: We observe developers not to be
aware of Julia’s macros to achieve desired program execution
time. Macros offer program execution time boosting by op-
erating on expressions that will be compiled once. Macros
are part of Julia’s metaprogramming feature and listed in
Julia docs for speedup [22]. Examples suggesting macros are:
using @inbound with for loops to avoid bound checking (
25009072), replacing eval by @eval ( 20174352).

10) Data Structure Knowledge Gap: This cause includes
not using appropriate data structure implementation to achieve
better program execution time. An example post labeled with
the category “Data Structure Concern” and “Mathematics/S-
tatistics/Machine Learning” has asked efficient implementation
of Markov Chain ( 50274934). The accepted answer sug-
gests using view and work on a transpose of a matrix.

The number of SO posts that belong to each cause is
presented in Figure 2. A SO post where program execution
time discrepancy is reported, can be explained using one or
more causes.

Fig. 2: Program execution time discrepancy causes with fre-
quency. KG stands for knowledge gap.

IV. DISCUSSION

Based on our findings from Section III-A we recommend
developers to use Julia-specific programming constructs to
diagnose discrepancies related to program execution time
they experience. Examples of such constructs are: using
‘@code warntype’ to diagnose type instability [23], ‘@time’
and ‘@allocated’ to measure memory allocation with time
spent [21], and ‘@profile’ to investigate time spent by each
line [23].

The identified causes from Section III-B are mentioned by
the Julia community in forms of community guidelines [21]
and documentation [23]. Answers to RQ2 suggest that devel-
opers may not be reading the community guidelines, and rely-
ing on the SO community, as suggested by Parnin et al. [24].
We recommend developers to consult the Julia documentation
and Julia performance guidelines when writing Julia programs.
As SO is popular amongst developers for seeking guidance, the
Julia community can identify strategies to be involved more
with SO community, and resolve developers issues.

Limitations of Our Study: The identified categories and
causes are susceptible to the bias of the first author. We

https://stackoverflow.com/questions/38687435/better-way-to-take-lots-of-dot-products
https://stackoverflow.com/questions/47501844/julia-differentialequations-jl-speed
https://stackoverflow.com/questions/29742768/what-are-the-reasons-for-this-benchmark-result
https://stackoverflow.com/questions/31321810/gini-coefficient-in-julia-efficient-and-accurate-code
https://stackoverflow.com/questions/20613817/julia-julia-lang-performance-compared-to-fortran-and-python
https://stackoverflow.com/questions/20613817/julia-julia-lang-performance-compared-to-fortran-and-python
https://stackoverflow.com/questions/42043590/why-is-this-very-simple-vectorized-code-orders-of-magnitude-slower-than-numpy
https://stackoverflow.com/questions/42043590/why-is-this-very-simple-vectorized-code-orders-of-magnitude-slower-than-numpy
https://stackoverflow.com/questions/31656858/parallelising-gradient-calculation-in-julia
https://stackoverflow.com/questions/50975707/parallel-computing-in-julia-and-mis-allocating-of-cores
https://stackoverflow.com/questions/26168943/module-loading-with-multiple-processes
https://stackoverflow.com/questions/20613817/julia-julia-lang-performance-compared-to-fortran-and-python
https://stackoverflow.com/questions/25009072/how-to-write-good-julia-code-when-dealing-with-multiple-types-and-arrays-mult
https://stackoverflow.com/questions/25009072/how-to-write-good-julia-code-when-dealing-with-multiple-types-and-arrays-mult
https://stackoverflow.com/questions/20174352/julia-speeding-up-eval
https://stackoverflow.com/questions/50274934/efficient-implementation-of-markov-chains-in-julia


mitigate this limitation by assigning a rater to categorize a
subset of the SO posts. We only use SO posts, which could
suffer from external validity. In future, we plan to mitigate this
limitation by including questions and answers from the Julia
Discourse Forum [25].

V. RELATED WORK

Our paper is related to prior research studies in the do-
main of scientific software. Milewicz et al. [3] studied how
collaboration happens amongst developers while developing
open source scientific software. Howison and Herbshleb [26]
identified incentives for creating and maintaining scientific
software. Bangherth and Heister [27] identified what practices
are helpful to develop open source scientific software libraries.
The above-mentioned prior research did not address what
categories of performance discrepancies developers face when
developing scientific software.

Prior research has extensively used SO datasets to gather
insights for different domains. Examples include studying
collaborative learning features [28], classifying expert users
[29], analyzing Java security [9], analyzing Python-related
security [10], and analyzing static analysis alert resolution
[13]. The above-mentioned discussion suggests that studying
SO posts could be useful for domain-specific research such as
Julia.

VI. CONCLUSION

In the domain of scientific software, achieving desired pro-
gram execution time is vital for developers, as the developed
software is involved in computationally intensive scientific
applications. Discrepancies related to program execution time
for scientific software could hinder developers in completing
their tasks. We apply qualitative analysis with 263 Julia-related
SO posts, and identify 9 categories of program execution time
discrepancies. We also identify 10 causes, which explain pro-
gram execution time discrepancies. Based on our analysis, we
provide two recommendations: (i) use documentation to follow
Julia coding best practices, and (ii) use program profiling to
diagnose program execution time discrepancies.

We hope that future research will investigate other sources
of data, such as developer surveys, and the Julia Discourse
Forum [25]. Researchers can explore other languages used in
scientific software to investigate if other categories of program
execution time discrepancies are identified. We hope our paper
can facilitate further research in the domain of Julia and
scientific software.
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